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1. INTRODUCTION

Mobile devices let users pick the apps they want to run.
App stores offer a wide range of software for users to choose.
Users pick particular apps for a variety of reasons: ordering
in the store [8], reviews and privacy concerns [7], and secu-
rity rules from their employer.

People fall into patterns when thinking about the privacy
issues around apps [5]. By capturing these patterns explic-
itly as policies they can be enforced automatically. This re-
duces the burden on users to decide which apps they want.
Security-savvy users may design policies themselves: these
could be shared with others or used in organisation-wide
curated app stores.

We show that we can model security and privacy policies
using AppPAL. Using installation data we explore the extent
the policies are being enforced. We find that only few users
appear to be enforcing policies when choosing apps.

2. APPPAL

We use the AppPAL authorization logic [4], a version of
SecPAL [6], to write policies with a precise semantics. App-
PAL describes policies specifiying when an app is installable.
Statements are relative to specific principals, enabling dele-
gation relationships to be expressed. Delegation is natural in
the app store setting: it captures trust relationships among
the users, the stores, the developers, and security vendors
who vet apps.

Alice, a user, can state that an app is installable:

"alice" says "com.rovio.angrybirds" isInstallable.

She can specify that an app is only installable if some con-
straint (checkable by inspecting the app or through static
analysis) is true. She can also delegate parts of the decision
to third parties. They must state specific facts about the
app for Alice to accept them. For example, suppose Alice
only wants apps without the LOCATION permission, and sat-
isfying her not-malware requirement. She trusts McAfee to
decide whether the not-malware policy is met:
"alice" says App isInstallable

if "not-malware-policy" isMetBy(App)
where hasPermission(App, "LOCATION") = False.

"alice" says "mcafee" can-say
"not-malware-policy" isMetBy(App).
Our AppPAL prototype is implemented as a Java library
and runs on the Java and Dalvik virtual machines.
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3. POLICIES

In a user study of 725 Android users, Lin et al. found
four patterns that characterise user privacy preferences for
apps [5]. The Conservative (C) users were uncomfortable
allowing an app access to any personal data for any reason.
The Unconcerned (U) users felt okay allowing access to most
data for almost any reason. The Advanced (A) users were
comfortable allowing apps access to location data but not if
it was for advertising reasons. Opinions in the largest clus-
ter, Fencesitters (F), varied but were broadly against col-
lection of personal data for advertising purposes. We wrote
AppPAL policies to describe each of these behaviours as in-
creasing sets of permissions:
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These simplify the patterns discovered. But AppPAL con-
straints can describe richer policies than permission sets.

Like other vendors, McAfee classify malware into several
categories. The malicious and trojan categories describe
traditional malware. Other categories classify PUPs (poten-
tially unwanted programs) such as aggressive adware. Using
AppPAL we can write policies to differentiate between dif-
ferent kinds of malware, characterising users who allow dan-
gerous apps or those who install merely “unsavoury” apps.

"user" says "mcafee" can-say

"malware" isKindOf (App).
"mcafee" says "trojan" can-act-as "malware".
"mcafee" says "pup" can-act-as "malware".

4. EXPERIMENTS

We aim to demonstrate AppPAL as a language for mod-
elling app installation policies. We want to measure how far
users enforce app installation policies informally. Users have
opinions about apps [5]: but are they acting on them?

4.1 Methodology

We want to test how well policies capture user behaviour.
Installation data was taken from a partially anonymized®

!Users are replaced with incrementing numbers, app names
are replaced with hashes to protect sensitive names.



database of installed apps captured by Carat [1]. By calcu-
lating the hash of known package names we see who in-
stalled what. The initial database has over 90,000 apps
and 55,000 users. On average each user installed around
90 apps each; 4,300 apps have known names. Disregarding
system apps (such as com.android.vending) and very com-
mon apps (Facebook, Dropbox, Whatsapp, and Twitter) we
reduced the set to an average of 20 known apps per user.
To see some variations in app type, we considered only the
44,000 users who had more than 20 known apps. Using this
data, and the apps themselves taken from the Google Play
Store and Android Observatory [3], we checked which apps
satisfied which policies.

4.2 Results
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Figure 1: Use of policies modelling user behaviour.
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Figure 2: Percentage of malware in installed apps
for users installing some malicious apps.

Figure 1 shows that the very few users follow these poli-
cies, but a few users who do seem to be installing apps meet-
ing these policies most of the time. For the unconcerned
policy (the most permissive) only 1,606 users (4%) had 50%
compliance; and only 120 users (0.3%) had 80% compliance.
For the stricter conservative policy only 60 users were com-
plying half the time, and just 7 more than 80% of the time.
This suggests that while users may have privacy preferences
the majority are not attempting to enforce them.

We found 1% of the users had a PUP or malicious app
installed. Figure 2 shows that infection rates for PUPs and
malware is small. A user is 3 times more likely to have a
PUP installed than malware. Only 9 users had both a PUP
and malware installed. Users who were complying more than
half the time with the conservative or advanced policies com-
plied with the malware or PUP policies fully. This is sig-
nificant (P-value < 0.05) and suggests that users who pick
their apps carefully are less likely to experience malware.

S. DISCUSSION

Most users seem to use apps irrespective of how uncom-
fortable they are with the permissions they request. A small
set of users do seem to enforce these policies at least some
of the time however. Exploring where this disconnect comes
from is an avenue for future research. Do users not under-
stand the relationship between apps and permissions [2]7 Is
enforcing them informally too difficult?

We claim that AppPAL can capture the differences in in-
formal user policies. Using AppPAL we have written short
policies describing user behaviour and used these to identify
the users following them to varying degrees. Some limita-
tions of our results include:

e We do not have the full user purchase history, and
we can only find out about apps whose names match
those in available databases. So a user may have apps
installed that break the policy without us knowing.

e Recently downloaded apps used for experiment may
not be the same version that users had, in particular,
their permissions may differ. Permissions tend to in-
crease in apps over time [9]; so a user may actually be
more conservative than our analysis suggests.

To avoid these limitations, we want to test policies out
directly with users, and to explore more complex policies
dynamically. We will do this in two ways. First, by provid-
ing an Android app for AppPAL where a user can check their
currently installed apps against predefined (perhaps down-
loadable) policies. Second, we want to enable automatically-
curated app stores for Android that are parameterised on
AppPAL policies.
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