
Obidroid: Monitoring the Android App Store for Unfair or
Deceptive Practices

Luis Aguilar, Shreyas, Kristine Yoshihara, Marti A. Hearst
University of California Berkeley,

Berkeley CA 94720
{luis, shreyas, kristine_y, hearst}@ischool.berkeley.edu

1. INTRODUCTION
Google's Android platform is currently one of the most popular
smartphone platforms in the world, with over 81% market share
[1] and over 10 billion app downloads. Due to the platform’s
popularity, there are many potentially harmful applications that
can steal user information, push malware, or otherwise cause
injury to users. While Google’s venue for apps, the Google Play
Store, is constantly on the lookout for apps that are malware or
viruses, there is currently no monitoring for apps that meet FTC
requirements for unfair [2] or deceptive practices [3]. For
example, the Brightest Flashlight Free Application was
reprimanded by the FTC for deceptively continuing to share user
data, even after users opted to keep their information private [4].

The FTC is tasked with protecting users against such apps, but
this process has not been automated and they are reliant upon user
complaints or media reports to identify potentially untrustworthy
apps. This is due in large part to the volume of apps in comparison
to the FTC’s investigative bandwidth.

In Obidroid, we have built a predictive model based on app
attributes that identifies or marks applications as flagged that may
be engaging in unfair or deceptive practices. The system does not
pass final judgment on the legality of an app, but rather is
intended as a helpful assistant for initially flagging such apps,
which can then be investigated more closely by a human expert.

We aimed to cast a wide net while flagging since the system is
intended to augment, not replace human intervention: high recall
is to be preferred over high precision. Hence, incorrectly flagging
good apps is more acceptable than overlooking apps that should
have been flagged.

The tool should be adaptable to reflect the constantly changing
nature of user reviews and the underlying applications, and it
should be able to be run on a periodic basis.

2. RELATED WORK
The Google Play Store currently screens traditional malware
through an application called Bouncer, which periodically
analyzes apps through dynamic analysis in a sandbox. Detection
of unfair and deceptive apps is largely left to crowdsourcing and
users are expected to evaluate the privacy policy and requested
permissions before installing an app [5]. Given sufficient severity
and volume of complaints, the FTC evaluates apps for unfairness
and deception, according to the following criteria: 1. Unfairness:
Substantial injury to consumers that cannot be reasonably avoided
and is not outweighed by countervailing benefits and 2.)
Deception: material harm to the consumer caused by
misrepresentation, omissions, or practices likely to mislead. This
evaluation is typically performed through a mix of qualitative and
technical evaluation of the discrepancy between what the app
should be doing and its actual actions. [2][3][4].

Much of the recent research on privacy and untrustworthy apps
has focused on the relationship between permission, malware, and
user expectations [6]. Previously, Kuehnhausen and Frost
developed a system to detect malicious apps based on ratings,
permissions, and analysis of review spelling and sentiment [7].
None of these studies specifically use FTC criteria, focusing
instead on indicators of traditional malware.

3. FEATURES AND DATA
We obtained data by scraping app profiles from the Google Play
store, which were then hand labeled according to FTC criteria
listed in the previous section, and scaled across each feature.

Currently, the FTC analyzes apps based on Google Play Store
attributes to search for apps that are indulging in unfair or
deceptive practices. We assessed the validity of those attributes as
features for flagging the apps and then created additional features
to improve the predictive power of our model.

The features shown in Table 1 were useful for building a
statistical model. We evaluated the performance of both
parametric and nonparametric methods using these features,
including K Nearest Neighbor, Gaussian Naïve Bayes, decision
tree based ensemble methods, and Support Vector Machines. K
Nearest Neighbor weighted by distance achieved the highest
average adjusted accuracy, based on 13 trials, in which the
classifier was trained on set of 36 apps and tested against a set of
10 apps, both sets having a 1:1 fair to unfair ratio. The test set is
currently small because only limited data was available.

Table 1. Features extracted from written reviews of apps.

Feature Description Intuition /
Origin

revSent

Aggregate review
sentiment, by classifying
each sentence of a review
into positive, negative and
neutral[8]

NLP inspired

revLength Length of review (character
count) NLP inspired

avgRating Average rating of the app -

hasPrivacy Whether the app has a
privacy policy or not FTC inspired

Has Developer
Website

App has an associated
developer website FTC inspired

Count Multiple
Apps

App creator has multiple
apps on the app store

Reliability of
the app
creator

Installs Total installs of each app -
Count
Exclamation

Count of Exclamation
Points NLP inspired

countCapital Count capitalized words in
a review NLP inspired

countAdjective Count of Adjectives in a
review NLP inspired

Count Negative
Words

Count the number of
negative words from a
curated list

NLP inspired

unigrams Presence of curated
malindicator words NLP inspired

bigrams Top 20 bigrams via
likelihood ratio measure NLP inspired

trigrams Top trigrams based on raw
frequency NLP inspired

4. FINDINGS & RESULTS
In evaluating the performance of our model, we preferred models
with lower false negatives over false positives, in order to cast a
wider net. Based on this metric, the average prediction accuracy
for the best model (K Nearest Neighbor) on the entire dataset was
90% using 4 fold cross validation. The review sentiment alone
gave a model with 86.25% accuracy, but adding other features
increased the performance of the model.

Our model revealed that the feature installs exhibits a behavior (as
shown in Table 2) such that values lower than 3M are good
predictors for flagged applications and higher values predict
unflagged applications. In contrast, other features were good
indicators for either one class or the other. Perhaps not
surprisingly, negative review sentiment, many words in all caps,
and long reviews were good predictors of flagged apps.
Counterintuitively, high average ratings were observed on both
flagged & unflagged apps, indicating that average rating, although
sometimes trusted by users, is not a good predictor. We further
clustered the apps using Multidimensional Clustering (MDS) in
order to determine where our model was failing to classify the
apps in the right category.

Figure 1. MDS clustering of all apps in our dataset. Red dots

are flagged apps.

MDS clustering revealed that certain flagged apps, such as the
“AntiVirus Security – Free” app, were clustered closely to apps
that were not flagged. These apps may be more prone to be
mislabeled. Adding or refining features may increase the distance
between these flagged apps and apps that were not flagged.

We generated a list of the most informative features from the
Obidroid Model to evaluate the features extracted from the app’s
attributes. Table 2 contains a summary of performance of those
key features.

Table 2. Most Informative Features

Feature Feature Value Feature Performance
(flagged/unflagged ratio)

Installs Installs=3,000 9:1

 Installs=30,000 6:1

 Installs=3,000,000 1:2

revSent revSent = -17 8:1

 revSent=-10 2:1

countCapital countCapital=9 3:1

revLength revLength=800+ 2:1

5. FUTURE WORK
Based off of these results, we can expect the Obidroid model, on
average, to flag 9 out of 10 potentially untrustworthy apps.
However, these results are based on a very small training set and
test set and so may only be suggestive. A tool based on this model
could be run to periodically scale down the task of monitoring the
exponentially increasing number of apps on the App Store.

6. ACKNOWLEDGMENTS
Our thanks to Deirdre Mulligan, Doug Tygar, Jen King, Serge
Egelman, and Morgan Wallace for their support in this project.

7. REFERENCES
[1] Dredge S. 2013. Android takes record smartphone share at

expense of iPhone and BlackBerry. Retrieved May 1, 2014
from at guardian.com/technology/2013/oct/31/android-
record-smartphone-share-iphone-blackberry.

[2] FTC. 1980. FTC Policy Statement on Unfairness. Retrieved
May 1, 2014 from ftc.gov/ftc-policy-statement-on-
unfairness.

[3] FTC. 1984. FTC Policy Statement on Deception. Retrieved
May 1, 2014 from ftc.gov/ftc-policy-statement-on-deception.

[4] FTC. 2014. In the Matter of Goldenshores Technologies,
LLC, and Erik M. Geidl. Retrieved May 1, 2014 from
ftc.gov/enforcement/cases-proceedings/132-
3087/goldenshores-technologies-llc-erik-m-geidl-matter.

[5] Cuadrado F. and Duenas, J.C. "Mobile application stores:
success factors, existing approaches, and future
developments." Communications Magazine, IEEE 50(11),
2012.

[6] Felt A., et al. Android Permissions Demystified. Proceedings
of the 18th ACM Conference on Computer and
Communications Security, 2011.

[7] Kuehnhausen M and Frost, Victor. Trusting smartphone
Apps? To install or not to install, that is the question.
CogSIMA, IEEE International Multi-Disciplinary
Conference, 2013.

[8] Hu M. and Liu B. "Mining and summarizing customer
reviews. "Proceedings of the Tenth ACM SIGKDD, 2004

