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1. INTRODUCTION 
Google's Android platform is currently one of the most popular 
smartphone platforms in the world, with over 81% market share 
[1] and over 10 billion app downloads. Due to the platform’s 
popularity, there are many potentially harmful applications that 
can steal user information, push malware, or otherwise cause 
injury to users. While Google’s venue for apps, the Google Play 
Store, is constantly on the lookout for apps that are malware or 
viruses, there is currently no monitoring for apps that meet FTC 
requirements for unfair [2] or deceptive practices [3]. For 
example, the Brightest Flashlight Free Application was 
reprimanded by the FTC for deceptively continuing to share user 
data, even after users opted to keep their information private [4]. 

The FTC is tasked with protecting users against such apps, but 
this process has not been automated and they are reliant upon user 
complaints or media reports to identify potentially untrustworthy 
apps. This is due in large part to the volume of apps in comparison 
to the FTC’s investigative bandwidth. 

In Obidroid, we have built a predictive model based on app 
attributes that identifies or marks applications as flagged that may 
be engaging in unfair or deceptive practices.  The system does not 
pass final judgment on the legality of an app, but rather is 
intended as a helpful assistant for initially flagging such apps, 
which can then be investigated more closely by a human expert. 

We aimed to cast a wide net while flagging since the system is 
intended to augment, not replace human intervention:  high recall 
is to be preferred over high precision. Hence, incorrectly flagging 
good apps is more acceptable than overlooking apps that should 
have been flagged. 

The tool should be adaptable to reflect the constantly changing 
nature of user reviews and the underlying applications, and it 
should be able to be run on a periodic basis. 

2. RELATED WORK 
The Google Play Store currently screens traditional malware 
through an application called Bouncer, which periodically 
analyzes apps through dynamic analysis in a sandbox. Detection 
of unfair and deceptive apps is largely left to crowdsourcing and 
users are expected to evaluate the privacy policy and requested 
permissions before installing an app [5]. Given sufficient severity 
and volume of complaints, the FTC evaluates apps for unfairness 
and deception, according to the following criteria: 1. Unfairness: 
Substantial injury to consumers that cannot be reasonably avoided 
and is not outweighed by countervailing benefits and 2.) 
Deception: material harm to the consumer caused by 
misrepresentation, omissions, or practices likely to mislead. This 
evaluation is typically performed through a mix of qualitative and 
technical evaluation of the discrepancy between what the app 
should be doing and its actual actions. [2][3][4].  

 

Much of the recent research on privacy and untrustworthy apps 
has focused on the relationship between permission, malware, and 
user expectations [6]. Previously, Kuehnhausen and Frost 
developed a system to detect malicious apps based on ratings, 
permissions, and analysis of review spelling and sentiment [7]. 
None of these studies specifically use FTC criteria, focusing 
instead on indicators of traditional malware. 

3. FEATURES AND DATA 
We obtained data by scraping app profiles from the Google Play 
store, which were then hand labeled according to FTC criteria 
listed in the previous section, and scaled across each feature. 

Currently, the FTC analyzes apps based on Google Play Store 
attributes to search for apps that are indulging in unfair or 
deceptive practices. We assessed the validity of those attributes as 
features for flagging the apps and then created additional features 
to improve the predictive power of our model. 

The features shown in Table 1 were useful for building a 
statistical model. We evaluated the performance of both 
parametric and nonparametric methods using these features, 
including K Nearest Neighbor, Gaussian Naïve Bayes, decision 
tree based ensemble methods, and Support Vector Machines. K 
Nearest Neighbor weighted by distance achieved the highest 
average adjusted accuracy, based on 13 trials, in which the 
classifier was trained on set of 36 apps and tested against a set of 
10 apps, both sets having a 1:1 fair to unfair ratio. The test set is 
currently small because only limited data was available. 

Table 1. Features extracted from written reviews of apps.  

Feature Description Intuition / 
Origin 

revSent 

Aggregate review 
sentiment, by classifying 
each sentence of a review 
into positive, negative and 
neutral[8] 

NLP inspired 

revLength Length of review (character 
count) NLP inspired 

avgRating Average rating of the app - 

hasPrivacy Whether the app has a 
privacy policy or not FTC inspired 

Has Developer 
Website 

App has an associated 
developer website FTC inspired 

Count Multiple 
Apps 

App creator has multiple 
apps on the app store 

Reliability of 
the app 
creator 

Installs Total installs of each app - 
Count 
Exclamation 

Count of Exclamation 
Points NLP inspired 



countCapital Count capitalized words in 
a review NLP inspired 

countAdjective Count of Adjectives in a 
review NLP inspired 

Count Negative 
Words 

Count the number of 
negative words from a 
curated list 

NLP inspired 

unigrams Presence of curated 
malindicator words NLP inspired 

bigrams Top 20 bigrams via 
likelihood ratio measure NLP inspired 

trigrams Top trigrams based on raw 
frequency NLP inspired 

 

4. FINDINGS & RESULTS 
In evaluating the performance of our model, we preferred models 
with lower false negatives over false positives, in order to cast a 
wider net.  Based on this metric, the average prediction accuracy 
for the best model (K Nearest Neighbor) on the entire dataset was 
90% using 4 fold cross validation. The review sentiment alone 
gave a model with 86.25% accuracy, but adding other features 
increased the performance of the model. 
 
Our model revealed that the feature installs exhibits a behavior (as 
shown in Table 2) such that values lower than 3M are good 
predictors for flagged applications and higher values predict 
unflagged applications. In contrast, other features were good 
indicators for either one class or the other.  Perhaps not 
surprisingly, negative review sentiment, many words in all caps, 
and long reviews were good predictors of flagged apps. 
Counterintuitively, high average ratings were observed on both 
flagged & unflagged apps, indicating that average rating, although 
sometimes trusted by users, is not a good predictor. We further 
clustered the apps using Multidimensional Clustering (MDS) in 
order to determine where our model was failing to classify the 
apps in the right category. 
 

 
Figure 1. MDS clustering of all apps in our dataset. Red dots 

are flagged apps. 

MDS clustering revealed that certain flagged apps, such as the 
“AntiVirus Security – Free” app, were clustered closely to apps 
that were not flagged. These apps may be more prone to be 
mislabeled. Adding or refining features may increase the distance 
between these flagged apps and apps that were not flagged. 
 

We generated a list of the most informative features from the 
Obidroid Model to evaluate the features extracted from the app’s 
attributes. Table 2 contains a summary of performance of those 
key features.  

Table 2. Most Informative Features 

Feature Feature Value Feature Performance 
(flagged/unflagged ratio) 

Installs Installs=3,000 9:1 

 Installs=30,000 6:1 

 Installs=3,000,000 1:2 

revSent revSent = -17 8:1 

 revSent=-10 2:1 

countCapital countCapital=9 3:1 

revLength revLength=800+ 2:1 

5. FUTURE WORK 
Based off of these results, we can expect the Obidroid model, on 
average, to flag 9 out of 10 potentially untrustworthy apps. 
However, these results are based on a very small training set and 
test set and so may only be suggestive. A tool based on this model 
could be run to periodically scale down the task of monitoring the 
exponentially increasing number of apps on the App Store. 
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