
Poster: Towards Continuous Authentication Based On
Mobile Messaging App Usage

Eric Klieme
NovaTec Consulting GmbH

Dieselstraße 18/1
70771 Leinfelden-Echterdingen
eric.klieme@novatec-gmbh.de

Klaus-Peter Engelbrecht
Quality and Usability Lab, TU Berlin

Ernst-Reuter-Platz 7
10587 Berlin

klaus-peter.engelbrecht@telekom.de

Sebastian Möller
Quality and Usability Lab, TU Berlin

Ernst-Reuter-Platz 7
10587 Berlin

sebastian.moeller@telekom.de

1. INTRODUCTION
With the help of current messaging apps, files or location data can
be exchanged in addition to traditional text messages in a
convenient way. Thus, more sensitive data is stored in the apps
[4] and access of adversaries becomes a higher risk in the case the
device gets lost or stolen [7]. Current authentication mechanisms
such as PINs or graphical passwords [8] are circumvented too
easily by shoulder-surfing [2] or smudge-based attacks [1]. Also,
authentication mechanisms may often be turned off due to
usability reasons, as frequent interaction requires authentication
every time. Continuous authentication has been proposed as a way
to protect the data by authenticating the legitimate use in a
constant manner in the background based on interaction data. In
this work, a framework for collecting natural touchscreen
interaction data, which is built into an open-source messaging
app, is described. Two studies were conducted to collect
interaction data of legitimate users and adversaries. Preliminary
results show that a distinction between legitimate users and
adversaries is possible based on the touch gestures alone.

2. DATA COLLECTION FRAMEWORK
To collect interaction data in the field, an existing messaging app
(YAXIM) was enhanced with log functionalities. YAXIM is an
instant messaging application implementing the Extensible
Messaging and Presence Protocol (XMPP) including some
XMPP Extension Protocols (XEP). By that, it provides convenient
features known from popular messaging apps such as Delayed
Delivery (a message is also delivered if a recipient is currently
offline) or Message Delivery Receipts (a notification can be
requested if a message is delivered to a recipient). Furthermore, a
client-server infrastructure only accessible by the users was set up,
including the app clients on the users` mobile devices and an
XMPP server (Openfire). As a consequence, a high level of data
privacy could be reached since, for example, the automated
logging of all exchanged messages at the server side was switched
off.

YAXIM (www.yaxim.org) is an open source app (GNU GPLv2),
which was a requirement as no messaging app provides the
needed logging features out-of-the-box. Although there exist other
open source XMPP apps, YAXIM provided the needed level of
provided features, a respective user interface and was not too
complex since instrumentation required a deep understanding of
the application. We instrumented YAXIM to retrieve and to log
touch interaction on a daily basis. A central “touch listener” was
implemented that received touch events from the contact list view,
the chat view and the settings view. In addition, all control

elements such as the ”send” button or the chat input text field
were registered at this listener. For each touch interaction, the X
and Y coordinate, the timestamp, the pressure and the respective
action (up, down, move) are forwarded to the listener.

To log all the information on the user activity level, YAXIM’s
program flow was analyzed to identify the methods, which are
responsible for actions like sending a message or that are triggered
if a new message is received. In terms of logging user interactions
like “pushing the back button” or “switching of the screen”, the
enhancement of lifecycle methods typical to the Android
operation system like onCreate() or onResume() helped. Similar
to a central touch listener, a central user activity listener was
responsible to aggregate all events forwarded from the contact,
chat and settings view. This information, which was later written
to log files, included the timestamp, the action done (like opening
a chat view), the reason (like choosing a contact) and the time that
elapsed based on the transition that happened before (like the time
elapsed between opening the contact view and choosing a
contact). Apart from all activities resulting in full screen
transitions, all activities within the chat view were considered,
too. By that each message writing process was logged including
information on the recipient, the length of the text, the duration,
the speed, the corrections, and if the message was successfully
sent or interrupted. In case it was interrupted, the respective
reason (e.g. pushing the back or home button) was logged, too.
Note that no message content was logged as all key stroke based
information was dropped, and recipient related information
included only hashed values.

Overall, an extensible framework of classes and interfaces was
designed implementing the publish-subscribe pattern. As a result,
arbitrary observers or types of events can be added in later stages
of the framework like, for instance, key stroke events, events from
sensors like the accelerometer, or events published by other apps.
In the same manner, events or authentication scores could be
published to other apps.

In order to prevent unwanted data loss, an automated data backup
mechanism was implemented: All daily log files were put into a
zip archive and were transmitted to the server if the device was
connected to an external power source and to a Wi-Fi.

3. PRELIMINARY RESULTS
Data of legitimate use of the app was collected in the field. Eight
participants (7 male; 22-26 years; M=24.3; SD=1.50) participated
as part of groups of 3-4 persons chatting with each other for 9-16
days. Participants registered for the experiment as a complete chat

group. Thus, they were intrinsically motivated to use our app in
their everyday live. The app was installed on the participants’ own
smartphones. Thus, compared to previous work where touch data
were obtained from rather artificial tasks [3, 5], more natural
interaction data could be collected.

In a second study dedicated to collecting attacker interaction data,
21 technically skilled participants (10 male; 20-49 years; M=27.9;
SD=6.74) performed two types of attacks on the app. For the
study, they were invited to a test lab and provided with a
smartphone with the app installed and a fictional contact list and
message history stored on the phone. First, participants
reconstructed a fictional social network. To do so, they had to
assign each contact stored in the phone to groups like “family”,
“friends”, or “colleagues”, based on the content of the messages
stored in the phone. Afterwards, they distributed a fictional
malicious URL to as many contacts as possible, making sure that
the link will be clicked by as many recipients as possible. Half of
the participants had 1 minute for the first task, and 3 minutes for
the second; the other half vice versa.

Afterwards, more than 20 features were extracted out of typical
touch movements such as scrolling. So far, we only studied how
well attack detection is possible based on movement touch events
such as scrolling within the contact view, scrolling within the chat
view to read messages, long-click in text field for writing
messages, long-click on send button, long-click somewhere else.
Apart from simple features, like the start or end coordinates of a
movement, or its maximum X- or Y-coordinate, higher order
features like direction, mean resultant length, acceleration, and
velocity were extracted based on the work of Frank et al. [3]. To
allow for a comparison of data collected with different
smartphones, all coordinates and distances were normalized by
the screen size. The final number of data points obtained from the
legitimate user test was 18095. Due to differences between the
users in using the app, different amounts of data points were
obtained for each user (Muser = 2261.9; MINuser=100;
MAX user=6659). The overall number of data points for adversaries
was 12637 (Muser=631.9; MINuser=46; MAXuser=1905).

To evaluate how accurately attacks can be distinguished from
legitimate use, we trained 8 Naïve Bayes classifiers on the data,
one for each user. Evaluation was done with data of the respective
user and of all attackers. We cross-validated (CV) over the
attackers, leaving out the most recent legitimate user data for
testing in each CV round.

Table 1 shows that the true-negative rate is approximately 91% on
average and thus provides a good recognition of imposters,
missing only 9% of all attacks. In terms of the true-positive,
approximately 69% are reached. That is ok, but too low for a
direct deployment in real applications. Based on a false-negative
rate of ~31%, every third sample swipe would identify him or her
as an attacker despite being the legitimate user.

In order to judge the strength of the proposed authentication
approach, it should be considered that multiple user actions could
be analyzed to detect an attack, leading to higher true positive and
true negative rates. However, contrary to some previous
approaches, where the user is authenticated before getting access
to the app (e.g. [6]), our algorithm detects an attack after the
adversary already had access to the app and the data stored within
it. Thus, the detection should happen as early as possible. Because

of that, the final model should process as many types of actions as
possible (e.g., also taps) and should return reliable results after as
few user actions as possible. We have collected such data and will
investigate them in the future.

Finally, in order to mimic the legitimate user’s behavior, an
attacker could watch him using the application. However, due to
mobile internet subscription and the “always-on” characteristics
of messaging services, interactions with the app can happen at
random places and times during the day. This makes it very hard
for the attacker to observe enough interaction without being
noticed. Also, mimicking the user behavior would constrain the
actions an adversary could take, making it hard to reach goals
which the legitimate user would never pursue.

4. ACKNOWLEDGMENTS
We are grateful for the many comments and suggestions we
received from usable privacy and security group of our lab.

5. REFERENCES
[1] Aviv, A.J., Gibson, K., Mossop, E., Blaze, M., Smith, J.M.

Smudge attacks on smartphone touch screens. In Proc. of 4th
USENIX conference on Offensive technologies (2010), 1–7.

[2] Forget, A., Chiasson, S., Biddle, R. Shoulder-surfing
resistance with eye-gaze entry in cued-recall graphical
passwords. In Proc. of SIGCHI Conference on Human
Factors in Computing Systems (2010), 1107–1110.

[3] Frank, M., Biedert, R., Ma, E., Martinovic, I., Song, D.
Touchalytics: On the Applicability of Touchscreen Input as a
Behavioral Biometric for Continuous Authentication. IEEE
Transactions on Information Forensics and Security, 8, 1
(2013), 136–148.

[4] Karlson, A.K., Brush, A.J.B., Schlechter, S. Can I borrow
your phone? Understanding concerns when sharing mobile
phones. In Proc. of SIGCHI Conference on Human Factors
in Computing Systems (2009), 1647–1650.

[5] Kolly, S.M., Wattenhofer, R., Welten, S. A personal touch:
recognizing users based on touch screen behavior. In
Proceedings of the Third International Workshop on Sensing
Applications on Mobile Phones (2012), 1:1–1:5.

[6] De Luca, A., Hang, A., Brudy, F., Lindner, C., Hussmann, H.
Touch me once and I know it’s you! Implicit authentication
based on touch screen patterns. Proceedings of the 2012
ACM annual conference on Human Factors in Computing
Systems (2012), 987–996.

[7] Symantec Smartphone Honey Stick Project | Symantec:
http://www.symantec.com/about/news/resources/press_kits
/detail.jsp?pkid=symantec-smartphone-honey-stick-project
Retrieved March 6, 2014.

[8] United States Patent: 5559961: http://patft.uspto.gov/netacgi
/nph-Parser?Sect2=PTO1&Sect2=HITOFF&p=1&u=
/netahtml/PTO/search-bool.html&r=1&f=G&l=50&d=PALL
&RefSrch=yes&Query=PN/5559961 Retrieved March 6,
2014.

Table 1 Classification Results
True

positive
True

negative
False

positive
False

negative
Area under

ROC
69.33 90.98 9.02 30.67 0.91

