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1. INTRODUCTION 
With the help of current messaging apps, files or location data can 
be exchanged in addition to traditional text messages in a 
convenient way. Thus, more sensitive data is stored in the apps 
[4] and access of adversaries becomes a higher risk in the case the 
device gets lost or stolen [7]. Current authentication mechanisms 
such as PINs or graphical passwords [8] are circumvented too 
easily by shoulder-surfing [2] or smudge-based attacks [1]. Also, 
authentication mechanisms may often be turned off due to 
usability reasons, as frequent interaction requires authentication 
every time. Continuous authentication has been proposed as a way 
to protect the data by authenticating the legitimate use in a 
constant manner in the background based on interaction data. In 
this work, a framework for collecting natural touchscreen 
interaction data, which is built into an open-source messaging 
app, is described. Two studies were conducted to collect 
interaction data of legitimate users and adversaries. Preliminary 
results show that a distinction between legitimate users and 
adversaries is possible based on the touch gestures alone. 

2. DATA COLLECTION FRAMEWORK 
To collect interaction data in the field, an existing messaging app 
(YAXIM) was enhanced with log functionalities. YAXIM is an 
instant messaging application implementing the Extensible 
Messaging and Presence Protocol (XMPP) including some 
XMPP Extension Protocols (XEP). By that, it provides convenient 
features known from popular messaging apps such as Delayed 
Delivery (a message is also delivered if a recipient is currently 
offline) or Message Delivery Receipts (a notification can be 
requested if a message is delivered to a recipient). Furthermore, a 
client-server infrastructure only accessible by the users was set up, 
including the app clients on the users` mobile devices and an 
XMPP server (Openfire). As a consequence, a high level of data 
privacy could be reached since, for example, the automated 
logging of all exchanged messages at the server side was switched 
off. 

YAXIM (www.yaxim.org) is an open source app (GNU GPLv2), 
which was a requirement as no messaging app provides the 
needed logging features out-of-the-box. Although there exist other 
open source XMPP apps, YAXIM provided the needed level of 
provided features, a respective user interface and was not too 
complex since instrumentation required a deep understanding of 
the application. We instrumented YAXIM to retrieve and to log 
touch interaction on a daily basis. A central “touch listener” was 
implemented that received touch events from the contact list view, 
the chat view and the settings view. In addition, all control 

elements such as the ”send” button or the chat input text field 
were registered at this listener. For each touch interaction, the X 
and Y coordinate, the timestamp, the pressure and the respective 
action (up, down, move) are forwarded to the listener. 

To log all the information on the user activity level, YAXIM’s 
program flow was analyzed to identify the methods, which are 
responsible for actions like sending a message or that are triggered 
if a new message is received. In terms of logging user interactions 
like “pushing the back button” or “switching of the screen”, the 
enhancement of lifecycle methods typical to the Android 
operation system like onCreate() or onResume() helped. Similar 
to a central touch listener, a central user activity listener was 
responsible to aggregate all events forwarded from the contact, 
chat and settings view. This information, which was later written 
to log files, included the timestamp, the action done (like opening 
a chat view), the reason (like choosing a contact) and the time that 
elapsed based on the transition that happened before (like the time 
elapsed between opening the contact view and choosing a 
contact). Apart from all activities resulting in full screen 
transitions, all activities within the chat view were considered, 
too. By that each message writing process was logged including 
information on the recipient, the length of the text, the duration, 
the speed, the corrections, and if the message was successfully 
sent or interrupted. In case it was interrupted, the respective 
reason (e.g. pushing the back or home button) was logged, too. 
Note that no message content was logged as all key stroke based 
information was dropped, and recipient related information 
included only hashed values. 

Overall, an extensible framework of classes and interfaces was 
designed implementing the publish-subscribe pattern. As a result, 
arbitrary observers or types of events can be added in later stages 
of the framework like, for instance, key stroke events, events from 
sensors like the accelerometer, or events published by other apps. 
In the same manner, events or authentication scores could be 
published to other apps.  

In order to prevent unwanted data loss, an automated data backup 
mechanism was implemented: All daily log files were put into a 
zip archive and were transmitted to the server if the device was 
connected to an external power source and to a Wi-Fi.  

3. PRELIMINARY RESULTS 
Data of legitimate use of the app was collected in the field. Eight 
participants (7 male; 22-26 years; M=24.3; SD=1.50) participated 
as part of groups of 3-4 persons chatting with each other for 9-16 
days. Participants registered for the experiment as a complete chat 



group. Thus, they were intrinsically motivated to use our app in 
their everyday live. The app was installed on the participants’ own 
smartphones. Thus, compared to previous work where touch data 
were obtained from rather artificial tasks [3, 5], more natural 
interaction data could be collected. 

In a second study dedicated to collecting attacker interaction data, 
21 technically skilled participants (10 male; 20-49 years; M=27.9; 
SD=6.74) performed two types of attacks on the app. For the 
study, they were invited to a test lab and provided with a 
smartphone with the app installed and a fictional contact list and 
message history stored on the phone. First, participants 
reconstructed a fictional social network. To do so, they had to 
assign each contact stored in the phone to groups like “family”, 
“friends”, or “colleagues”, based on the content of the messages 
stored in the phone. Afterwards, they distributed a fictional 
malicious URL to as many contacts as possible, making sure that 
the link will be clicked by as many recipients as possible. Half of 
the participants had 1 minute for the first task, and 3 minutes for 
the second; the other half vice versa. 

Afterwards, more than 20 features were extracted out of typical 
touch movements such as scrolling. So far, we only studied how 
well attack detection is possible based on movement touch events 
such as scrolling within the contact view, scrolling within the chat 
view to read messages, long-click in text field for writing 
messages, long-click on send button, long-click somewhere else. 
Apart from simple features, like the start or end coordinates of a 
movement, or its maximum X- or Y-coordinate, higher order 
features like direction, mean resultant length, acceleration, and 
velocity were extracted based on the work of Frank et al. [3]. To 
allow for a comparison of data collected with different 
smartphones, all coordinates and distances were normalized by 
the screen size. The final number of data points obtained from the 
legitimate user test was 18095. Due to differences between the 
users in using the app, different amounts of data points were 
obtained for each user (Muser = 2261.9; MINuser=100; 
MAX user=6659). The overall number of data points for adversaries 
was 12637 (Muser=631.9; MINuser=46; MAXuser=1905). 

To evaluate how accurately attacks can be distinguished from 
legitimate use, we trained 8 Naïve Bayes classifiers on the data, 
one for each user. Evaluation was done with data of the respective 
user and of all attackers. We cross-validated (CV) over the 
attackers, leaving out the most recent legitimate user data for 
testing in each CV round. 

Table 1 shows that the true-negative rate is approximately 91% on 
average and thus provides a good recognition of imposters, 
missing only 9% of all attacks. In terms of the true-positive, 
approximately 69% are reached. That is ok, but too low for a 
direct deployment in real applications. Based on a false-negative 
rate of ~31%, every third sample swipe would identify him or her 
as an attacker despite being the legitimate user.  

In order to judge the strength of the proposed authentication 
approach, it should be considered that multiple user actions could 
be analyzed to detect an attack, leading to higher true positive and 
true negative rates. However, contrary to some previous 
approaches, where the user is authenticated before getting access 
to the app (e.g. [6]), our algorithm detects an attack after the 
adversary already had access to the app and the data stored within 
it. Thus, the detection should happen as early as possible. Because 

of that, the final model should process as many types of actions as 
possible (e.g., also taps) and should return reliable results after as 
few user actions as possible. We have collected such data and will 
investigate them in the future. 

Finally, in order to mimic the legitimate user’s behavior, an 
attacker could watch him using the application. However, due to 
mobile internet subscription and the “always-on” characteristics 
of messaging services, interactions with the app can happen at 
random places and times during the day. This makes it very hard 
for the attacker to observe enough interaction without being 
noticed. Also, mimicking the user behavior would constrain the 
actions an adversary could take, making it hard to reach goals 
which the legitimate user would never pursue. 

4. ACKNOWLEDGMENTS 
We are grateful for the many comments and suggestions we 
received from usable privacy and security group of our lab. 

5. REFERENCES 
[1] Aviv, A.J., Gibson, K., Mossop, E., Blaze, M., Smith, J.M. 

Smudge attacks on smartphone touch screens. In Proc. of 4th 
USENIX conference on Offensive technologies (2010), 1–7. 

[2] Forget, A., Chiasson, S., Biddle, R. Shoulder-surfing 
resistance with eye-gaze entry in cued-recall graphical 
passwords. In Proc. of SIGCHI Conference on Human 
Factors in Computing Systems (2010), 1107–1110. 

[3] Frank, M., Biedert, R., Ma, E., Martinovic, I., Song, D. 
Touchalytics: On the Applicability of Touchscreen Input as a 
Behavioral Biometric for Continuous Authentication. IEEE 
Transactions on Information Forensics and Security, 8, 1 
(2013), 136–148. 

[4] Karlson, A.K., Brush, A.J.B., Schlechter, S. Can I borrow 
your phone? Understanding concerns when sharing mobile 
phones. In Proc. of SIGCHI Conference on Human Factors 
in Computing Systems (2009), 1647–1650. 

[5] Kolly, S.M., Wattenhofer, R., Welten, S. A personal touch: 
recognizing users based on touch screen behavior. In 
Proceedings of the Third International Workshop on Sensing 
Applications on Mobile Phones (2012), 1:1–1:5. 

[6] De Luca, A., Hang, A., Brudy, F., Lindner, C., Hussmann, H. 
Touch me once and I know it’s you! Implicit authentication 
based on touch screen patterns. Proceedings of the 2012 
ACM annual conference on Human Factors in Computing 
Systems (2012), 987–996. 

[7] Symantec Smartphone Honey Stick Project | Symantec: 
http://www.symantec.com/about/news/resources/press_kits 
/detail.jsp?pkid=symantec-smartphone-honey-stick-project 
Retrieved March 6, 2014. 

[8] United States Patent: 5559961: http://patft.uspto.gov/netacgi 
/nph-Parser?Sect2=PTO1&Sect2=HITOFF&p=1&u= 
/netahtml/PTO/search-bool.html&r=1&f=G&l=50&d=PALL 
&RefSrch=yes&Query=PN/5559961 Retrieved March 6, 
2014. 

Table 1 Classification Results 
True 

positive 
True 

negative 
False 

positive 
False 

negative 
Area under 

ROC 
69.33 90.98 9.02 30.67 0.91 


