
 Expressions of Expertness: The Virtuous Circle of Natural
Language for Access Control Policy Specification
Philip Inglesant, M. Angela Sasse

Department of Computer Science
University College London

Gower Street, London WC1E 6BT, UK
{p.inglesant, a.sasse}@cs.ucl.ac.uk

+44 20 7679 3039

David Chadwick, Lei Lei Shi
Computing Laboratory

University of Kent
Canterbury, Kent, CT2 7NZ, UK

{d.w.chadwick@kent.ac.uk,L.L.Shi}@kent.ac.uk

ABSTRACT
The implementation of usable security is particularly challenging
in the growing field of Grid computing, where control is
decentralised, systems are heterogeneous, and authorization
applies across administrative domains. PERMIS, based on the
Role-Based Access Control (RBAC) model, provides a unified
infrastructure to address these challenges. Previous research has
found that resource owners who do not understand the PERMIS
RBAC model have difficulty expressing access control policies.
We have addressed this issue by investigating the use of a
controlled natural language parser for expressing these policies. In
this paper, we describe our experiences in the design,
implementation, and evaluation of this parser for the PERMIS
Editor. We began by understanding Grid access control needs as
expressed by resource owners, through interviews and focus
groups with 45 Grid practitioners. We found that the many areas
of Grid computing use present varied security requirements; this
suggests a minimal, open design. We designed and implemented a
controlled natural language system to support these needs, which
we evaluated with a cross-section of 17 target users. We found
that participants were not daunted by the text editor, and
understood the syntax easily. However, some strict requirements
of the controlled language were problematic. Using controlled
natural language helps overcome some conceptual mis-matches
between PERMIS RBAC and older paradigms; however, there are
still subtleties which are not always understood. In conclusion, the
parser is not sufficient on its own, and should be seen in the
interplay with other parts of the PERMIS Editor, so that,
iteratively, users are helped to understand the underlying PERMIS
model and to express their security policies more accurately and
more completely.

Categories and Subject Descriptors
H5.2. Information interfaces and presentation: User Interfaces:
Natural Language

General Terms
Design; Security; Qualitative Methods; Observations

Keywords
Authorization; Access Control; Grid computing; RBAC;
Controlled Natural Language

1. INTRODUCTION
It should be indisputable that security and usability must co-exist.
As long ago as 1975, Saltzer and Schroeder [19] promoted the
security principle of psychological acceptability, so that
protection mechanisms are applied routinely by their target users.
Security which is not usable is likely to lead to dangerous errors
[22] and circumventions [1], and ultimately reduction in security.

The arguments for usable security mechanisms are well-known
even if they are not always easy to put into practice. This paper
presents an effort to improve usability of a tool for a fundamental
aspect of security – access control in authorization policies.
Security and privacy policies have traditionally been the
responsibility of specialists, but the user community is
broadening. These disparate groups of users must be enabled to
express policies accurately and completely, since security
problems may have a highly negative impact [14]. Moreover,
security and privacy is rarely the user’s main goal. We believe
that these observations are equally relevant to the specific area of
security in Grid computing on which this paper focuses. The
challenge, then, is to produce interfaces to access control tools
that are accessible, and to enable resource owners to correctly set
controls that reflect their security needs.

PERMIS [7] offers a basis for achieving usable access control. In
essence, PERMIS is an integrated, Role-Based Access Control
(RBAC) [21] infrastructure which provides all the necessary
support for resource owners to manage authorization policies, and
for these policies to be implemented in web services and Grid
applications.

Recognising the inherent difficulties in setting access control
policies, PERMIS provides a Policy Editor with several
complementary interfaces. The earliest interface was a Graphical
User Interface (GUI), with tabs and drop-down menus. Later, a
wizard for creating new policies and a policy tester were added.
These interfaces successfully reduce the burden of maintenance of
large and complex policies, but a vital aspect of policy
specification is to ensure that the resource owner avoids mistakes
arising from basic misconceptions [6]. To some extent, this need
can be met by matching the language of the Editor to that of the
target users [15]; earlier work successfully enhanced the usability
of the GUI using these principles [4].

The new PERMIS user interface presented in this paper takes a
more fundamental approach: it uses controlled natural language
to reduce the “distance” [16] between resource owners’ familiar,
real-world access control needs and their expression in computer
terms. This is not a replacement for the older interfaces, but is
complementary to them. It aims to “match the users’ world” [15],
not by incorporating their language into an interface which still

Copyright is held by the author/owner. Permission to make digital or
hard copies of all or part of this work for personal or classroom use is
granted without fee.

Symposium On Usable Privacy and Security (SOUPS) 2008, July 23-25,
2008, Pittsburgh, PA, USA.

reflects the underlying computer logic, but by enabling resource
owners to express policies in their own natural ways of thinking.

In an earlier paper in this project, Chadwick & Sasse [6] asserted
that enabling the use of controlled natural language expression of
security policies should greatly reduce the scope for
misconceptions and mistakes in policy specification. However, at
that early stage, this remained to be investigated empirically. In
this paper, we revisit these assertions, in the light of our
experiences with applying these ideas in practice.

The remainder of this paper is organised as follows. Section 2
reviews previous research in usable security policy specification
and identifies key issues in Grid and RBAC authorization. Section
3 describes the first phase of our work to address these issues, in
which we gained an understanding of the ways in which resource
owners express their access control needs, and enhanced our
design of a controlled natural language interface. We evaluated
the usability of our interface in scenario-based observations as
detailed in section 4. In section 5, we relate our results from this
evaluation to the key issues identified in section 2. We conclude
by considering ways in which usability of our interface might be
improved and give brief pointers for future work.

2. BACKGROUND: FROM USER VALUES
TO ACCESS CONTROL POLICIES
The overall problem which this paper addresses is that it is often
difficult for resource owners to bridge the gap between their
security needs, which might be understood in quite general terms,
and the expression of those needs in concrete, computer terms
[11]. This problem has been addressed by the usable security
research community over the past 10 years; in this section we
review the key previous work.

The target user community for our work was Grid computing; we
address problems which have been found in the specification of
Grid authorization policies [4]. We consider ways in which
resource owners’ natural expertise can be engaged, and we show
that controlled natural language has been used in similar areas and
is a good candidate to enable the expression of access control
policies in an intuitive way.

We conclude our review of the background to our research by
identifying the usability challenges of policy specification in our
underlying PERMIS RBAC authorization model.

2.1 What the Resource Owner Intends
It is important to clarify the direct, but often obscure, path from
the intentions of resource owners through to low-level actions by
IT systems.

Resource owners - developers, system administrators, end users,
and others - generally have good knowledge of the assets under
their control and of who should be allowed to do what [9]. This is
at the level where, if asked whether person A should be allowed
to use a resource X, most can answer “yes” or “no”, based on
their knowledge about the person and rules about how the
resources should be used. The problem is not, then, that resource
owners lack knowledge of their access control needs, but that they
may have difficulty in expressing them correctly in an
authorization system [11].

We agree with Witten & Tygar [22], whose research into the
usability of a public key implementation has relevance to user
specification of access control, that computer security
management, like more conventional programming, is a process
of manipulation of abstract rules, and consequently alien and
unintuitive for non-programmers.

Moreover, emerging security needs must work in a context very
different from that for which security paradigms were designed.
In contrast to a conventional mainframe system, where security
was essentially under the control of a single system administrator,
today it is often required to secure resources on a decentralised
network with no single point of control.

2.2 Authorization Reaches Out
In practical implementation, these emerging paradigms can be
made tractable with a clear understanding of the differences and
interplay between authentication and authorization.
Authentication is the process of determining and verifying the
identity of the user (or other actor) making a request, whilst
authorization is determining whether to grant a user (or other
actor) a particular form of access to a resource [19].

In practice, authorization is far more important than
authentication, but, perhaps paradoxically, authentication has, to
date, been studied in more depth. This could be because usable
and fully-verifiable authentication systems are a prerequisite for
authorization. Thus, authorization and authentication are
inter-dependent; privacy invasions, for example, can result from
designers’ (and implementers’) inability to foresee how, or by
whom, data might be used [2]. But authorization presents its own
usability issues. In this paper, we focus on the usability of the
interface for setting the authorization or access control policy.

Traditionally, access control – whether a policy-based model or
access control lists on each resource - has not been controlled
directly by “end users” of the system, but rather by system
administrators. Increasingly, for example in WebDAV or NTFS
security, end users, as resource owners, are indeed responsible for
setting the access controls. Moreover, as Yee [23] and others have
observed, setting and maintaining security controls is rarely the
user’s primary concern. A usable way to express access control is
essential if it is to be followed reliably, but there is the additional
danger that users may not fully understand the implications of
their security actions.

2.3 Authorization in Grid computing
Setting access controls in ways which are comprehensible and
clear is all the more important in the growing area of Grid
computing. Here, the systems protected, and the applications
running on them, are heterogeneous, and may include very
expensive or highly confidential resources. Grids may expand to
very large computer systems, potentially accessed by many users
or by other computers. This large, complex network of actors,
resources, actions, permissions, and conditions leads to a
correspondingly dynamic and complex security configuration.

Moreover, because the computers in a Grid are spread across
administrative domains - different organisations and
organisational units - and possibly even across jurisdictions or
national boundaries, a resource owner will usually not grant
access directly to an individual known to him or her. Conversely,

with the use of “super schedulers” or resource brokers, a person
requesting use of Grid resources might not know in advance the
particular set of hosts on which the request will be actioned [12].

Applying these kinds of complex configurations resembles
end-user programming rather more than it resembles interactions
which are commonly performed using a GUI. To the extent that
this is a form of programming, it is a process of transforming a
conceptual plan “in the head” of the user/programmer in familiar,
informal terms, into a form which is compatible with a computer.
There is long-standing empirical research into how non-
programmers “naturally” think about programming [16]. More
recently, Rode, Rosson, and Quiñones [18] have made a study of
how non-programmer webmasters think about some common
processing needs in web applications. They discovered many
mis-conceptions and unconsidered assumptions; in particular, they
found that non-programmer webmasters can usually devise a
simple permission scheme, but it is almost always incomplete.

2.4 Language and Human Intentions
The same authors who have pointed out the distance between
users’ mental plans and the expression of those plans in terms
which are compatible with a computer have also suggested
natural-ness as a way to decrease this “distance” [16]. On the
other hand, the experience with early attempts to do so, such as
COBOL [20], shows that simply adopting natural-language-like
syntax does not necessarily lead to naturalness in itself. Pulman
[17] suggested that controlled natural language, a dialect of
English, might be a way to support experts in some field to
express their expertise in a way which could be translated into a
computer-readable form.

Thus, natural-ness is not necessarily best achieved by a full
natural language [16]; controlled natural language is not in any
way a compromise. Controlled language can be tailored for
specific uses, such as web service protocol descriptions or the
construction of ontologies, as has been done by the General
Architecture for Text Engineering (GATE) team in the Semantic
Knowledge Technology (SEKT) project1. Significantly, these
have compared favourably with a GUI-style ontology editor [10].

The use of specification languages has been used elsewhere in
end-user specification of security and/or privacy policies. For
example, SPARCLE is designed for natural expression of privacy
policies [3]. Adage includes a formal logical language alongside a
GUI for expressing RBAC policies [24].

However, the motivation and approach behind PERMIS is quite
specific. We have already seen (section 2.3) that Grid computing
presents particular authorization challenges. PERMIS is designed
to address these challenges on the basis of RBAC. As the
following subsection shows, RBAC provides a means to make
Grid security manageable, but also presents new conceptual
difficulties for users. Our use of controlled natural language is
part of our research into ways to overcome these difficulties.

2.5 Challenges in RBAC Policy Specification
Access control in PERMIS is based on a unified access control
model, a variant of RBAC. One of the advantages of such an

1 http://gate.ac.uk/; http://www.sekt-project.com/

authorization policy is that, unlike access control applied at the
level of each subject or each target resource such as access control
lists or Unix-style read-write-execute, a unified policy is more
maintainable and more scalable [5].

As well as providing a solid foundation for security
implementations, RBAC is applicable to completely general
situations, rather than being drawn from the privacy or security
needs of particular applications. This is one of its strong points,
but without careful interface design this could place a
correspondingly greater onus on the resource owner.

However, it cannot be assumed that resource owners are
previously familiar with RBAC - especially if Grid use is to
extend beyond specialist research. Such resource owners may
have a partial understanding of “what needs to be done” [4] to
implement access control. In particular, Brostoff et al. [4]
identified two classes of problem among such target users, the
“policy components” and “policy paradigms” problems.

By “policy components problem”, they mean a misconception of
the basic structure of the PERMIS RBAC policy space, such as
Subject Domains (the domains from which users can be allowed
to access resources) and role assignments around Source of
Authority (SOA) or domain administrators. By “policy paradigm
problem”, they mean that resource owners are unsure which
objects should be included in a policy, and which left out, if they
follow the mental model of traditional access control such as
“explicitly grant and explicitly deny access”. Policies built using
such a mental model are likely to be inefficient rather than
insecure, since PERMIS RBAC policies exclude by default all
permissions which are not explicitly granted (the “deny all,
except” model). Nevertheless, there is a risk of unintended
outcomes whenever a resource owner does not understand a key
aspect of policy specification.

There are, then, two sources of risk arising from mistakes in
setting access control policies. With increased complexity of the
policy, there is a consequent likelihood of omissions, ambiguities
or inconsistencies [6]. There can also be mistakes which follow
from a basic mis-understanding of the underlying security model,
as Brostoff et al. identified [4]. Alongside these new classes of
“programming” error, there remains the possibility of simple
“slips”, lapses or spelling errors, to be eliminated.

For the reasons we discussed above, we believe that controlled
natural language has potential for overcoming problems for users
of knowing “what needs to be done”, and can enable “slips” to be
easily detected. At the same time, once conceptual shortcomings
have been addressed, users still need to be supported to know how
to use the interface to express their policy. The challenge for us,
then, was to allow resource owners to express policies without
requiring them to have any specialist knowledge of RBAC or
access control models, and to design an interface which is usable
in this more conventional sense.

3. EASY EXPRESSION OF
AUTHORISATION POLICIES
This was the point of departure for the Easy Expression of
Authorisation Policies (EEAP) project. As part of the PERMIS
infrastructure, EEAP is particularly concerned with security
issues in e-Science, Grid computing, and web services generally.

3.1 The Virtuous Circle of Authorization
Policy Specification
The fundamental idea underlying EEAP is the virtuous circle of
expressing authorization policies [6]. The virtuous circle is based
on the realisation that language stands in a special relationship to
human understanding. GUI visualisations, from this viewpoint,
are complementary to controlled natural language, rather than
being the only means of expressing access control policies. The
user can choose either, or switch between them, so that checking
is completely available for both visual and linguistic cognition.

We started the project with the natural language output for the
virtuous circle already in place, as part of the PERMIS Editor
GUI. Policies, expressed using the GUI or a Wizard, are
transformed into machine-processable form in XML according to
the PERMIS DTD [5]. The XML is then transformed (using an
XSL stylesheet) back to the user as (fairly) natural language. The
final policy is therefore available to the user in three forms: raw
XML, the familiar GUI screens, and the natural language output.
Crucially, the natural language display also shows diagnostic
errors and warning messages. Because the output, in whichever
form they prefer, is generated directly from the computer-readable
form of the policy, the user can be confident that it reflects the
authorization that will actually be enforced by the system.

3.2 Grid Security in the Wild
The process of developing a controlled natural language input for
the PERMIS Editor began by interviewing 45 Grid practitioners
across the range of application areas: physics, chemistry, medical
research and bioinformatics, earth sciences, and arts and
humanities. Interviews were semi-structured, with an average
length of about 45 minutes. They were voice-recorded and
transcribed for analysis in terms of actors, actions, resources, and
security needs. 18 participants were interviewed individually and
the others in small focus groups (2-4 participants).

This first phase of the research had three main purposes:

1. To understand the major requirements in Grid security, and
how they are expressed by Grid resource owners;

2. To inform the design of the ontology which underlies
PERMIS access control policies and is the first stage of
controlled natural language processing; and

3. To inform suitable scenarios for the later evaluation of the
natural language interface.

3.2.1 Grid Security: Varied Uses, Complex Needs
From the interviews, it was evident that Grid security policies
present particular challenges, because real-world situations are
complex and changeable. Grid computing has varied and
sometimes conflicting requirements: access to large volumes of
data, fine-grained access control, making specialised data or
software widely available to the research community, providing
very high-powered computer processing, and maintaining the
confidentiality of data. Even where data is not confidential,
integrity is important, especially if data volumes are very large.

In some areas, for example some kinds of humanities data, there
are commercial considerations; data may be restricted because it
has gained commercial value in electronic form, even if the raw

data is public. Conversely, the availability of electronic images of
rare documents may remove restrictions imposed by the physical
vulnerability of the originals.

3.2.2 R-what? Implications for Ontology design
In the absence of easily specified security policies which fit their
needs, resource owners may adopt simpler, all-or-nothing
policies. Indeed, the evidence of the interviews reinforces the
widespread finding that authorization is given a low priority by
many resource owners, except in high-security applications. The
means for expressing and maintaining access control policies
must be flexible enough to handle very different needs in different
applications, while remaining comprehensible by the intended
users.

Our original intention was to extract security terms, synonyms,
and antonyms, and relate them to the model formalized in the
ontology. However, our findings from this first phase suggested
the need to keep the ontology as general as possible by defining
only the basic classes and sub-classes, avoiding
application-specific instances.

3.3 Putting the Virtuous Circle into Practice
Underpinned by the ontology, the last link in the chain of a
virtuous circle of authorization policies has been now put in
place. The Policy Editor supports controlled natural language
input of the basic features of the RBAC model. An access control
policy in controlled natural language can be thus be transformed
into our ontology design, from the ontology into XML, and
re-presented back to the user as a diagnostic display, in natural
language or another form. However, the parser does not yet
include the full functionality of the PERMIS RBAC specification.

The controlled natural language interface provides a simple
layout. On the left-hand side, the user types sentences, each of
which represents a rule in the controlled language policy. These
sentences do not have to correspond to the order of the final
computer-readable policy, but are in any order which makes sense
to the user. Rules can be combined using comma-separated lists:

Manager, owner, and clerk are roles.
Managers and owners can print on LPT1 and Laserjet.

The space for entry of the controlled natural language text is a
simple editor, with functions such as cut/copy and paste and insert
or over-write, and shortcuts Ctrl+X, Ctrl+V, Ctrl+C (Error!
Reference source not found.). The right-hand side of the window
shows an example of a policy in controlled natural language, a
key part of the interface; resource owners should be able to
express security policies guided by a few example rules and only
minimal other guidance. Our example text is similar to the
Natural Language with Guide described by Karat et al. [13], but
shows a complete simple policy by example rather than a guide –
thus, users match the example elements to their required policy.

3.4 PERMIS Controlled Natural Language
It is important to understand that this is controlled natural
language processing. We have already shown that it is
natural-ness, not natural language in itself, which is of interest as
a means of reducing the distance between users’ intentions and

Figure 1: The controlled natural language interface

their formal expression. From the implementation point of view,
natural language is ambiguous and complex, and consequently
very hard to process by machines, and such tools that do exist are
usually not freely available. Controlled natural language, in
contrast, provides a strictly limited vocabulary and/or grammar.

This makes machine processing much easier [6], while still being
tailored to the specific requirements of the implementation. In
contrast with freer natural language parsers such as that used in
SPARCLE [3], accuracy of parsing is not really an issue, since the
user is required to keep within the syntax of the controlled
language.

Our controlled natural language processor uses of a GATE
implementation, Controlled Language for Ontology Editing
(CLOnE), itself built on earlier work of the GATE team,
Controlled Language for Information Extractions (CLIE). CLOnE
is built on ten syntactic rules [10], which we have extended
slightly. Thus its small rule set and few reserved words avoid the
ambiguities of full natural language as well as the compromises of
early natural-like programming languages such as COBOL [20].

Yet the constraints of the language also raise the possibility that
users’ authorization requirements cannot be expressed within its
limited syntax. Moreover, not all of the features of PERMIS are
currently supported, and in real use it is likely that more needs
would be identified.

In effect, specifying an authorization policy is very similar to
defining an ontology. On the one hand, this has advantages,
because it allows us to start from a well-defined ontology design
and to adapt an existing controlled language for our purpose. On
the other hand, the critical point for usability is that the ontology
should remain transparent to the user.

3.4.1 The Controlled Natural Language Interface
Some powerful usability features of CLOnE have been carried
over into our controlled natural language interface. For example,
the parser can identify matching nouns differing in singularity or
plurality, and can handle irregular forms or non-English loan
words (“There are Children. Xavier is a child”). This feature is

further enhanced in our implementation, which is more lax than
natural English in terms of grammatical agreement of singular or
plural of subject and verb (“supervisors and office staff are an
employee” is acceptable even though it is incorrect English).

In our controlled natural language, we have extended CLOnE in
three respects which pertain specifically to authorization policies:

1. A simple way, using triples, to allocate permissions to roles:
<Role> can <Action> on <Target>; for example, “Staff can
print on HP Laserjet 1.”;

2. Linking the special “can assign” permissions to role/attribute
administrators: <Admin> can assign the <Role> to
<Subject>; for example, “David can assign the manager role
to Alice.”, or “John can assign clerk to users from
department A.”;

3. Using “trust” as a variation of 2) in “I trust <Administrator>
to say who <Role> are; for example, “I trust David to say
who managers are.”.

The third of these changes reflects the important of trust in the
access control policies; however, this was not a focus of this
research and did not form part of the observations.

3.4.2 Classes and Instances: New Entities from Old
Our parser provides a useful grouping feature, which allows users
to refer concisely to properties which apply to the whole group.

A feature native to CLOnE, is that entities can be created as a
“type of” some already existing entity - that is, as a sub-class of a
class in the ontology.

We have extended this feature so that, when an entity class is
created, a special pseudo-instance is automatically created, called
“all_<class>” (eg. “all_Printer”). This can be used later to refer
to every object of that type (every instance of the class or
subclass). For example,

Printers are a type of resource.
Floor6_Color_printer is a printer.
Managers can print on all printers.

3.4.3 Language is Parsed in Context
This ability to create new types of entity from existing ones is
used in PERMIS so that the process of specifying a policy does
not start from an empty ontology, but builds on a small set of
hidden and pre-defined classes and relationships. The user is, in
effect, creating instances of classes and defining new classes from
existing ones, but is unaware of the inbuilt definitions. This
means that the sentences written by users are parsed in the context
of an access control policy for which the outline is already pre-
loaded.

This context is also in the form of controlled natural language
with exactly the same syntax:

There are users, roles, resources, actions, parameters
and permissions.
Resources are also called targets.
Users have roles.
Roles have permissions.

Permissions have resources and actions.
Resources have actions.
…

These rules, which describe the underlying RBAC model, are
loaded and parsed before any user input, to build an ontology
model with pre-defined classes and relationships from the
authors’ background knowledge of RBAC and PERMIS.

This background context removes from the user the burden of
defining from scratch the ontology of the RBAC model. But a
more important purpose of the context is to align the security
model in user’s mind with the RBAC model used in the computer
system. Users do not know, and should not have to know, about
the predefined ontology; but they should still be able to specify
policies by following the example text.

It is important to emphasise that users are not expected to know,
or to need to know, anything about the underlying ontology or
rulesets; we discuss these here only to clarify the connection
between controlled natural language and the final policy
expression. Classes, properties, pre-defined elements, and the
relationships between them, and from them to the final policy, are
transparent to the users.

The aim is that users are able to specify polices with the need
only to learn a few simple rules and follow the example text.

4. EVALUATION
The interviews conducted in the first phase informed the
requirements for the ontology design, which is the basis for a
controlled natural language interface. We now turn to the
evaluation of our interface.

From the review of previous research and our beliefs outlined
above, we derived four research questions:

1. Overall usability: can target users understand the syntax of
the controlled natural language, using the example?

2. Can target users understand the “building blocks” of a
PERMIS policy (resources, actions, roles, and administrator
and role assignments), and use them to construct policies?

3. Can target users avoid misconceptions in the
RBAC/PERMIS model when using the PERMIS controlled
natural language editor?

And, finally, the overall question:

4. Using controlled natural language, with the simple examples
provided, are target users able to specify policies accurately,
reflecting their real-world intentions?

This is a quite specific understanding of usability, tailored to the
needs of access control specification in controlled natural
language. At this stage, we did not attempt to measure other
aspects of usability, such as subjective satisfaction or efficiency.
We chose a scenario-based approach, recorded and observed in a
controlled environment. In real life, as users have to do more than
comply with tasks as they are prompted by a scenario [22], but at
this stage we were interested specifically in their use of controlled
natural language. Within the limitations of the scenario, a
“correct” policy is one in which everything which should be

specified, is specified, and all permissions which should be
granted, are granted.

The first scenario (Figure 2) was designed to reflect common
real-world access control needs without making reference to any
particular field of application. Where time allowed this was
followed by a more complex scenario; for participants with prior
e-science experience, this second scenario was drawn from their
field of work, based on the interviews conducted in phase one; for
others, the second scenario was a variant of the first.

These scenarios were quite specific in terms of access control, but
in a form which could not be simply entered verbatim into the
controlled natural language processor. In taking this approach, we
assume that real-world users know what they want to control; our
interest is in their ability to express their intentions. This requires
a careful methodological balance between the need to be clear
about what the policy should say, and the risk of simply giving
users a set of words they can copy.

4.1.1 Participants
Seventeen participants were recruited in three complementary
ways: using internal email lists; a request to IT-related staff
working internally in the college library; and from a database of
e-scientists built up during earlier phases of the research.

Target users are e-scientists (researchers with knowledge of their
research field and some understanding of Grid computing), senior
research management (Principal Investigators) and administrators
(such as departmental administrators or information systems
staff). Although they have good computer skills, they are not
computer security specialists.

All 17 participants were from our target group of users; all were
highly computer-literate and working in a variety of computer-
related areas. All of the participants were fluent in written and
spoken English, although not all had English as a first language.
Reflecting our aim of investigating security policy authoring by
users who are not Grid or security specialists, these are target
users even though not all of the participants had specific
e-Science or Grid experience.

Participants included 7 e-science researchers in Earth Sciences,
Medical, Crystallography/Chemistry, Physics, and Arts &
Humanities; and 10 participants without specific e-Science
experience, of whom 4 were computer science researchers and 6
were library computer professionals (web and database
administrators, project managers).

4.1.2 Conducting the observations
Although resource owners, if they are not security specialists,
may not have a detailed understanding of RBAC, we believe it is
realistic to expect that they would have informal knowledge of
basic access control concepts, perhaps from the PERMIS Editor
tutorial which new users are encouraged to follow. To ensure that
these basic ideas were understood, we prepared a short (1 page)
description of the basic RBAC concepts. This was read to them
by the experimenter in order to overcome different abilities in
grasping written information and to allow the experimenter to
check understanding at key points.

Each participant was then given, in printed form, the first scenario
presented in two formats: a written list of requirements and in
diagrammatic form (Figure 2). To reflect what we believe to be
the common point from which policy authoring starts, we
presented participants with scenarios as both words and a
diagram. We hoped the participants would mainly follow the
diagram. However, we found that in practice, they mostly ignored
the diagram and worked from the verbal description; in future, we
would use diagram-only for similar scenarios. Participants were
told that they could take as much time, and as many attempts as
they needed to complete a scenario and to produce a working
access control policy.

The first, simpler, scenario contained three roles, three resources
with three possible actions on them, and one administrator. The
second scenario was a little more complex, adding the concept of
users’ domains. The scenarios were phrased to include concepts
which are not normally expressed directly in RBAC: explicit
access denials; access to “all” instances of a resource type; and
“groupings” – different elements which are specified as being of a
type, as well as “background” elements such as a database
containing the resources.

Interactions, every action on the screen, keyboard and mouse, as
well as voice, were recorded using Camtasia Studio2. Participants
were allowed to ask questions and the observer could intervene at
his discretion. We did not use a formal think-aloud protocol
because this can be distracting, but we did encourage participants
to make comments, and occasionally the experimenter would ask
a participant to explain an action. These comments and questions
were noted during analysis and inform the results.

4.1.3 Analysing the Observation Data
The analysis proceeded as follows. Each of the recordings was
replayed as many times as necessary, with the analyst noting in a

2 http://www.techsmith.com/camtasia.asp

spreadsheet the times at which key events occurred, and each time
the participant clicked “Convert” this is considered to be a “try”.

Measured times include the time taken for the participant to read
the scenario, but not the time taken for the observer to read out
the background description of basic RBAC concepts. We call this
the elapsed time since “handover”, the point at which the observer
finished reading the introduction and RBAC overview and
explicitly made clear to the participant that the observation was
now under way.

We expected the participants to continue until a workable policy
was produced, within the time constraint of one hour overall.
Therefore, rather than a metric for scoring rules, a simple measure
of the accuracy of policy specification is the number of “tries”
made by each participant. This needs to be considered in
conjunction with the overall time, since some participants chose
to correct errors themselves, before clicking “Convert”.

At the same time as recording the timings and number of “tries”,
the analyst noted significant questions and comments by the
participants, used in the qualitative analysis which follows.

5. RESULTS

5.1 Overall results
Overall the results are encouraging: 14 (of 17) participants
grasped the basic concept of expressing policies in controlled
language without difficulty; the other 3 initially attempted to use
more uncontrolled language, but were nevertheless able to grasp
the controlled syntax with some intervention by the observer. The
time taken and number of attempts to produce a complete working
policy in the first scenario was higher than we would like in real
use, but we expect that this will fall as users learn the simple
grammar of the constrained language, and as they re-use and
amend existing “scripts”.

We now address in more detail the questions raised at the
beginning of section 4.

5.2 Usability of Controlled Natural Language
The controlled vocabulary and the names of objects in the
predefined ontology (resources, actions, roles, permissions) are
well understood. Participants did not need to understand the
relation between verbs such as “can” or “assign” and the creation
of entities in the ontology in order to specify workable policies.
Some participants considered the language almost as a “script”,
using that term in feedback to the observer.

5.2.1 Usability of the Editing Space
Our first concern in overall usability was that presenting
participants with an almost empty space on which to type, with
minimal editing controls and only an example text as a guide,
might be daunting.

However, this does not appear to have been a problem for our
participants. Measured from the “handover” of the session, the
delay time before the participant started to type on the text editing
space was an average of 3:35 minutes. We believe that this is a
sufficiently short time, including the time to read the instructions
and scenario, to indicate that participants were not daunted by the
emptiness of the screen.

Figure 2: General scenario 1 (diagrammatic form)

Name
DoB
Address
Postcode

Database

Analysts can
see only
DoB and
Postcode

Clerks can add and
change Name, date
of birth, Address
and Postcode

Owners
cannot
change any
data but
can read it
all

The majority (15 of 17) of the participants were able to specify an
accurate, workable access control policy for at least the simple
scenario within 47 minutes and 10 tries, although 7 required more
than trivial help to do so; 11 of 17 needed less than 30 minutes.
By “non-trivial help”, we mean that the observer intervened to
overcome some of the conceptual problems which we discuss
later in this section. In other cases, users were able to identify and
overcome these problems unaided or only requiring help in, for
example, a mis-spelling. Overall mean times to complete the
scenario (with some observer intervention in 6 cases) were 30:01
minutes in 5.41 tries. Excluding two outliers, mean times for
completion of the first scenario were 24:27 minutes in 4.47 tries.

We hope that the overall times will fall as target users learn the
requirements of our controlled natural language. There is some
evidence to support this. Of the 9 participants who proceeded to
the second, slightly more advanced, scenario, the mean time was
15:43 minutes in 2.67 tries, considerably better than the first.
However, note that this second scenario was conducted
immediately after the first, and was very similar, adding only two
additional user administrative domains.

5.2.2 Usability in Specifying Policy Elements
We found that participants had little difficulty in understanding
the basic elements, the pre-defined entities which are the
“building blocks” of an RBAC policy: roles, actions, and
resources. This in itself is a positive result, since RBAC revolves
around these concepts, which are unfamiliar, as access control
elements, to most of our participants.

It is clear from the detailed timings that some task elements are
more readily understood than others. Adding the three roles,
Clerk, Owner, and Analyst seems to have caused little problem.
Similarly, almost all participants managed to say “John is an
administrator.” on the first attempt.

There is a specific issue which caused some problems; this relates
to accuracy, and is also a part of the general usability of the
interface. This follows a design feature of the controlled
language: it is strict with regard to the pre-definition of entities.

References to entities do not cause that entity to be created
dynamically; if it has not been defined earlier in the policy, then
this is an error. This is by design; it applies to all entities –
resources, resource types, roles, actions, users, and administrators;
the aim is to prevent mistakes introduced by typing errors. For
example:

Clerk can read from databsae
will be reported as an error, rather than creating an incorrect
resource instance “databsae”. However, this does, naturally, add
to users’ workload by requiring that each instance must be
explicitly defined before it can be referenced. In our evaluations,
this kind of error occurred most frequently with actions: 7 users
failed to specify at least some of the actions to which they later
referred.

5.2.3 A Parsing Problem: Prepositions
The quantitative data does not show why some of the rules proved
difficult to specify. But analysis of the qualitative data shows one
of the most common problems: forgetting to add prepositions
between verbs and the corresponding object:

Owners can read Name.
instead of

Owners can read from Name.
Part of the scenario required a combination of write/add/change –
the scenario said:

Clerks can add and change Name, date of birth,
Address and Postcode

- given like this, without prepositions. Change and add do not
normally have prepositions, so the parser requires some slightly
“un-natural” English such as “Clerks can change on Name ...”.

The need for prepositions is a feature of the parser which would
require a deep re-design to change. Currently, the appropriate
design response is to guide users to follow the text accurately.

This is not a fundamental issue in the gap between users’
intentions and their expressions of them in language, but
illustrates the difficulties of making the language truly natural,
and problems if it falls short of this aim.

5.3 Building Policies from Ontology Elements
As we reported above, the basic entities were well understood.
We did, however, identify two common classes of problem in the
use of these pre-defined building blocks. These both concern
users’ conception of elements of the underlying ontology, and so
present a design question about how best to guide users, without
exposing explicitly the design of the ontology.

5.3.1 Understanding the policy “building blocks”
Participants should not have to know about the ontology and the
“building blocks” of an access control policy; they should be able
to specify policies intuitively from the example text. However,
they do need to understand that, although they are free to define
the names of new entities (classes and instances), these new
entities must be defined in terms of the existing entities.

This is the “grouping” feature of our controlled language,
described in section 3.4.2, a powerful tool for users but also
presents users with the possibility of unproductive choices.
Misunderstanding this, 5 participants defined elements as types of
resource, that is, as an ontology subclass, rather than as instances:

Postcode is a type of resource.
instead of, for example:

Field is a type of resource.
Postcode is a field.

The problem with the first of these declarations is that unless the
user specifies actual instances of a subclass into which the
“all_<class>” pseudo-instance is then expanded, no actual
resources are created in the final policy. But it is unlikely that a
non-specialist user, with no knowledge of the ontology, would
deduce this. Worse, policies expressed in this way can parse and
convert apparently correctly, but do not, in fact, contain any
resource instances and hence also no permissions. Some
participants, using the GUI, discovered that their subsequent
policies did not contain any resources when viewed, but were
unable to explain this without intervention.

All but one of these participants subsequently expressed
resources in a way which instantiates, either as above - as
instances of a subclass which they defined, such as Field - or,
more simply - but contrary to the example text - as instances of
Resource:

Name, Address, Dob and Postcode are Resources.
Fundamentally, users should not be expected to appreciate the
difference between classes and instances, which can be, and often
are, used interchangeably. For example, in a different access
control policy, Postcode might be a subclass; AA1 1BQ could be
an instance of this subclass. Users should be guided to use
whichever form is most appropriate, using the more powerful
grouping form if appropriate.

5.3.2 The Importance of the Example
An early version of the example text showed a sentence
specifying a parameter for an action:

Print has Pagenum
That is, the print action can take a pagenum parameter.

One participant attempted to specify a policy in which the
resources to be acted upon were given as parameters to the action,
for example:

Write with Address.
where Address is a parameter of the Write action. Superficially,
this seems reasonable, since actions can have parameters;
however, in our ontology it is not possible to restrict access
according to the parameters to an action – permissions apply to
the instances of resources and actions on them, not to parameters.

This line in the example text was removed from the example text
for later trials, and, not surprisingly, no further participants
attempted to express the policy in this way. The original example
text was more complete, and in a sense more correct, but also
potentially confusing for users.

5.4 Overcoming Misconceptions
The third question concerns the usability of controlled natural
language in overcoming users’ misconceptions about the access
control model

5.4.1 Where users are from
Notably, the participants were able to express the target
domain/subject domain distinction which was a source of
misconception for Brostoff et al [4], the first aspect of their policy
components problem. Indeed, in the controlled natural language
this distinction is largely avoided, so that it becomes intuitively
obvious that DepartmentA is the domain from which requests
originate, the subject domain, in the example text:

John can assign staff to users from DepartmentA.
This is despite some problems in practical application. The first
version of the example text omitted this crucial sentence; an
experimental shortcoming which, nevertheless, generated useful
insights into the ways in which participants are able to use the
example text. Secondly, the syntax at this point is strict, and
spaces in particular cause problems for the parser. Finally, the
choice of “staff” as a role name is potentially confusing.

Of the 5 participants who completed the scenario with the
amended example text, 3 were able to express assignments to
departments correctly and the remaining 2 with a very little
assistance, suggesting that this is intuitively followed.

From this evidence and from the interactions in the recordings,
combining “where users are from” with the authority of
administrators in one sentence creates a positive support for users’
understanding. However, concerning another point of
misconception identified by Brostoff et al. [4], the function of
domain administrators and the separation of roles from end-users,
the evidence suggests that this remains problematic, as we
describe in the following section.

5.4.2 Understanding Roles and Assignments
This second aspect of policy components concerns the special
Role Assignment Permission, and the associated action
“<administrator> can assign <role> to users [from <domain>]”.
Five participants attempted to express administrators in terms of
normal roles and actions, such as “add” and “remove”; but roles
and their assignment are separate from permissions to act on
resources, and assignment of users to roles cannot be expressed in
these terms. Instead, the special verb “assign” is used for this.

Fundamentally this suggests that these users have not understood
the difference between RBAC user-role assignment (which, in the
PERMIS model, are normally done by an administrator) and
RBAC role-permission assignments, specified in the access
control policy.

This is a likely explanation for the observation that participants
made this mistake even though the example text gave clear
examples of user-role assignment sentences.

5.4.3 Deny-all-access-except
Another point at which the requirements of PERMIS RBAC
diverge from the intuitive expectations of non-specialist users is
that, in PERMIS RBAC, the inbuilt default permission is
effectively “deny-all-except”; exclusions do not, therefore, need
to be explicitly stated, unless it is to reduce the scope of a
permission already granted (Brostoff et al’s [4] policy paradigm
problem).

To investigate this, we had taken care to include some explicit
denials in the scenarios:

Owners cannot change any data but can read it all
Brostoff et al.’s [4] predicted that novice users would have a
mental model similar to “explicitly grant and deny access”.
However, only two of our participants attempted to express this
using an explicit deny; a few others asked about it, verbally
during the trials, for clarification. This suggests that controlled
natural language has the potential to overcome conceptual
problems.

5.5 Analysis
At the end of this subsection we revisit the usability needs which
led us to explore the potential of controlled natural language.
Before doing so, however, we draw a wider lesson from the
results which relate to basic questions in Human-Computer
Interactions.

5.5.1 What Do They Need to Know? How can they
know it?
One of the basic aims of using controlled natural language is that
users should be able to specify policies by following example
rules with minimal other guidance [17]. The example text is
therefore crucial in this respect.

In sections 5.3.2 and 5.4.2 we provided two contrasting examples
of participants making use of the example text. In the first, a
participant followed the text example in a way which turned out
not to be helpful, while in the second, participants failed to follow
the example accurately, instead superimposing their own partial
understanding. Similarly, participants who forgot to put
prepositions between verbs and resource names were failing to
follow the example text - a warning given during the introduction
to the experiment also reminded them of this requirement.

The example content should naturally lead resource owners to
express policies in keeping with the underlying access control
model. The example must be as clear and simple as possible; yet
it should always be possible for a resource owner to express a
policy by adapting lines from the example text. The ways in
which participants do, or do not, make use of the example text is
indicative of the importance of linguistic cueing [8] for users.
Even though users knew that they had to express their intentions
subject to a controlled language, their ordinary natural language
use led to these simple syntactic mistakes.

5.5.2 Thinking about language
The issues which we have identified are not all simple usability
problems that could have been identified by heuristic analysis.
The issue with “type of resource” rather than “resource” is subtle,
and illustrates the importance of user testing.

Any language processor has to interpret the user’s intentions. As
we explained, in a different situation, there might be a need to
exploit the grouping features of the language with, for example,
Postcode as a subclass. The challenge for us is to enable users to
understand the choices open to them, while helping them to avoid
mis-specifying policies which do not function as intended.

This complex interplay between users’ own expectations and the
features of an interface suggests that controlled natural language
alone is not sufficient to solve the problems we have identified.
Rather, the existing interfaces should work with controlled natural
language, to allow users to disambiguate their intentions and to
provide better and more immediate feedback.

5.5.3 Revisiting the Problem
We are now in a position to revisit the usability issues which we
identified in section 2.5. Recall that we were concerned with risks
in access control specification arising from uncertainty about
“what needs to be done” [4] and how to do what needs to be done.
The interface therefore needs to guide a user to produce policies
which are accurate, complete, and do not contain security
vulnerabilities, and do so this in a way which is intuitive or is
available for the user to discover from examples.

In terms of misconceptions, our evidence suggests in some
aspects, such as excluding all permissions by default, it seems that
the logic of the user is intuitively closer to the model when
expressing policies in controlled natural language than when

using the GUI. On the other hand, not all of the elements of
Brostoff et al’s [4] policy components problem and policy
paradigm problems are overcome: the distinction between
assignments of users to roles and assignment of permissions to
roles is still not intuitively understood. There is a new source of
misconception in the distinction between subclasses of objects
and instances of objects.

A second class of error arises not from misconceptions but from
simple “slips” or lapses [6]. In section 5.2.2, we describe the
common problem of participants forgetting to pre-specify policy
objects, or of being unaware of the need to do so. Yet, as we
noted above, this “problem” is also a powerful means to
overcome simple errors; it is immediately clear to a user that a
mistake has been made. With better feedback, the small problem
would be easily overcome, while a larger risk of accidentally
mis-specifying a policy is avoided.

In terms of knowing how to do it, we feel that the times and
numbers of “tries”, both overall and for the individual task
elements, suggest that controlled natural language allows users to
specify policies easily and in a reasonable time. However, there
were some common problems which, although ostensibly simple
“mistakes”, may reflect underlying conceptual difficulties.

6. CONCLUSIONS
We started from the belief that our target users are “experts” in
the access control requirements of the resources under their
control. The question is whether they are able to express this
expertise using a quite general controlled natural language.

We found that evaluation participants were able to follow the
PERMIS Policy Editor “dialect” of controlled natural language.
However, we also found that, while they intuitively understood
the pre-defined “building blocks”, they sometimes had problems
in knowing how to construct policies from these “building
blocks”. Our implementation is promising to the extent that it
decouples intention from the underlying model; problems arise
when the controlled language implementation fails to match
natural language or the users’ intuitive understanding.

From our experimental method, we also learnt a lot about the
importance of the example, and of the careful wording of the
scenario. This is most evident in the confusion of subclasses and
instances. The example text shows actions on an object – a named
printer - which is naturally understood as one object (one
instance), and groups this into the class, “Printer”, with its
associated set, “All Printers”. Our scenario, in contrast, referred to
a set of objects - fields in a database - as though they are a single
object. This basic scenario was not based on Grid or e-science; its
abstractions might have been more difficult to express than, say,
access to physical objects or to a file. However, while this might
be considered a flaw, it revealed a problem which, we believe, is
always present: objects can always be grouped into sets in ways
which may, or may not, be supportive of the users’ intentions.

We conclude with some suggestions, drawn from the results
presented here, for ways in which future work can address the
problems we have identified, and some features which remain to
be implemented in our controlled language parser.

6.1 Informing the User
In these concluding paragraphs, we move beyond “what does the
user need to know?”, to consider “how does the user know what
they need to know?”.

The first point of reference which gives guidance to the user is the
example text (Error! Reference source not found.). By design, this
text makes no reference to any particular access control context so
as to be generally applicable. One response would be to change
the design to one in which the example text varies in context.
However, this would add complexities of its own and possibly be
more confusing for a user. A possible solution would give
multiple “typical” examples for different application areas,
displayed in tabs; the user would choose the most appropriate
example.

The basic problem is to enable the user to understand what is
happening when they specify access control polices; if there are
rules that fail to parse, the user needs to be able to understand
why. The question of how to bridge the subtle distinction between
classes and instances for non-specialists raises difficult usability
issues, and we are working on design ideas for how this might be
achieved. The special all_<class> (section 3.4.2) instance is a
partial solution - actions can be given to all instances of a
resource class. However, the user still needs to specify the
resource instances into which this special instance is later
expanded. We see a more dynamic and more supportive language
interface, working in conjunction with the GUI, prompting users
to disambiguate, and to fill gaps in their specifications.

The diagnostic log, currently only likely to be of interest to a
developer, also provides the basis for more useable feedback;
several participants drew a comparison with compilers, which
provide a comprehensive error report for the benefit of the
programmer. It would be helpful if the log could switch between
developer mode and user mode; in user mode, feedback could be
immediate, rather than waiting for the user to “Convert” the entire
policy specification.

6.1.1 Return to the Virtuous Circle
Feedback is not, however, limited to diagnostic output from the
language parser. This returns us to the virtuous circle of policy
specification. We started from the premise that natural language
output enables the user to check that the machine’s understanding
of a policy matches with what is intended [6]. With the
implementation of controlled natural language input, the virtuous
circle is complete.

The diagnostic messages in the natural language output are a key
part of helping the user to understand; but this should not be seen
as separate from the other interfaces of the PERMIS Policy
Editor. During the evaluation, we observed the ways in which
participants made use of the existing GUI interface to understand
which parts of their policies had been successfully specified and
which had failed. In future work, we plan to link the GUI more
closely with the controlled natural language editor, so that
modifications made in the GUI are reflected in the language text,
just as language text input is already reflected in the GUI.
Real-life users also have the availability of the PERMIS Policy
Tester, although this did not form part of our evaluations.

The virtuous circle, then, can be re-conceived as the various
interfaces to the PERMIS Editor working together to help users to
understand the rationality not only of the language parser, but of
the PERMIS access control system as a whole The specification
of policies, like programming, is an iterative process, in which the
user is informed by an assemblage of interfaces, combining to
ensure accurate and easy expression of authorization policies.

6.2 Remaining issues
6.2.1 Other Access Control
This early implementation does not yet support all of the features
available or which are being developed in PERMIS RBAC. It
does support role hierarchies and parameters to actions, but not,
currently, ANSI standard RBAC features such as separation of
duties, other conditions such as time of day, authorization
decisions based on non-role attributes such as Level of
Assurance3, obligations, and dynamic delegation of authority.

A final requirement of PERMIS policies is that resources are tied
to actions, so that only permitted actions can be performed on
target resources (although an action can, alternatively, be
allocated to “all targets”). In the GUI, this is labeled “Resources’
Functions”; in PERMIS terms, this is the Action Policy. This is
the rather non-natural “Printer has print” form in controlled
natural language. However, although this form is parsed, it is not
currently implemented in the policies which are produced, and
was ignored in our scenarios, although some participants,
following the example text, specified it. It is nevertheless
indicative, again, of the use made of the example text, and of the
acceptability of this rather non-natural language, constrained by
the features of the underlying platform.

6.2.2 Unique Names in Grid: LDAP
A pre-condition of Grid authorization, and of Grid security as a
whole, is that users have a Grid-wide uniquely identity [12]. In
PERMIS, as elsewhere, this is typically implemented by having
items in the policy referred to by Lightweight Directory Access
Protocol (LDAP)4 Distinguished Names (DNs).

Brostoff et al [4] found that, while the need for unique names is
intuitively understood by target users, they are usually not able to
correctly specify LDAP DNs; nor should they have to, since the
use of LDAP implies that there is a repository which can be
searched or browsed for entries.

The GUI part of the PERMIS Editor provides the ability to
connect and browse in an LDAP repository. Currently, the
controlled language interface does not have any LDAP support;
users have to browse LDAP via the GUI after they have finished
inputting their controlled natural language policy. Implementing
direct support for LDAP in the language interface will require
changes which could also increase the basic usability of the
Editor; for example, drop-down menus or hyper-links from which
a user could browse an LDAP directory.

3 NIST Electronic Assurance Guideline 800-63

http://csrc.nist.gov/publications/nistpubs/800-63/SP800-
63V1_0_2.pdf

4 http://tools.ietf.org/html/rfc4510

6.2.3 PERMIS Controlled Natural Language in Use
How will people use it? From remarks made by participants
during the evaluations and from our interviews and focus groups,
we suggest that in real life, people will maintain “scripts” which
can be loaded into the controlled natural language interface and
amended as needed. If this is correct, then this might overcome
issues of scalability in our controlled natural language interface
and also in working with the existing GUI interfaces.

Although we were constrained by the use of a particular
controlled natural language platform, placing an ontology, rather
than an XML expression of policy, at the centre, potentially
enables a more flexible design with new ways of interrogating an
policy. The issues we have identified in this early version of the
language parser provide pointers for improvements but also
suggest more general conceptual issues for future research.

7. REFERENCES
[1] Adams, A. and Sasse, M. A. 1999. Users Are Not The

Enemy. Communications of the ACM 42,12 (December)
(1999), 41-46

[2] Adams, A. and Sasse, M. A. 2001. Privacy in Multimedia
Communications : Protecting Users, not Just Data. In: People
and Computers XV - Interaction without frontiers. Joint
Proceedings of HCI 2001 and ICM 2001 (Lille, France,
September, 2001), Springer, Berlin, Germany, 49-64

[3] Brodie, C. A., Karat, C.-M., and Karat, J. 2006. An
Empirical Study of Natural Language Parsing of Privacy
Policy Rules Using the SPARCLE Policy Workbench. In:
Proceedings of Symposium On Usable Privacy and Security
(SOUPS) (Pittsburgh, PA, USA, July, 2006)

[4] Brostoff, S., Sasse, M. A., Chadwick, D., Cunningham, J.,
Mbanaso, U., and Otenko, O. 2005. "R-what?" Development
of a Role-Based Access Control (RBAC) Policy-Writing
Tool for e-Scientists. Software - Practice and Experience
35,9 (2005), 835-856

[5] Chadwick, D. and Otenko, O. 2002. RBAC Policies in XML
for X.509 Based Privilege Management. In: Security in the
Information Society: Visions and Perspectives: IFIP TC11
17th International Conference on Information Security
(SEC2002) (Cairo, Egypt, May, 2002), Kluwer Academic
Publishers, Dordrecht, Germany, 39-53

[6] Chadwick, D. and Sasse, M. A. 2006. The Virtuous Circle of
Expressing Authorisation Policies. In: Proceedings of
Second Semantic Web Policy Workshop (SWPW'06)
(Athens, GA, USA, November, 2006)

[7] Chadwick, D., Zhao, G., Otenko, O., Laborde, R., Su, L., and
Nguyen, T. A. A. 2008. PERMIS: a modular authorization
infrastructure. Concurrency and Computation: Practice and
Experience Forthcoming (2008)

[8] Clark, L. and Sasse, M. A. 1997. Conceptual design
reconsidered - the case of the internet session directory tool.
In: People and Computers XII: Proceedings of HCI'97
(Bristol, UK, August, 1997), Springer, Berlin, 67-84

[9] Fléchais, I., Mascolo, C., and Sasse, M. A. 2007. Integrating
security and usability into the requirements and design
process. International Journal of Security and Digital
Forensics 1,1 (2007), 12-26

[10] Funk, A., Tablan, V., Bontcheva, K., Cunningham, H.,
Davis, B., and Handschuh, S. 2007. CLOnE: Controlled
Language for Ontology Editing. In: Proceedings of 6th
International Semantic Web Conference (ISWC) (Busan,
Korea, November, 2007)

[11] Gollmann, D., Computer Security. John Wiley & Sons Ltd.,
Chichester, UK, 1999

[12] Humphrey, M. and Thompson, M. R. 2002. Security
Implications of Typical Grid Computing Usage Scenarios.
Cluster Computing 5,3 (2002), 257-264

[13] Karat, C.-M., Karat, J., Brodie, C., and Feng, J. 2006.
Evaluating Interfaces for Privacy Policy Rule Authoring. In:
Proceeding of CHI 2006 (Montréal, QC, Canada, April,
2006), ACM

[14] Karat, J., Karat, C.-M., and Brodie, C. Human-Computer
Interaction Viewed from the Intersection of Privacy,
Security, and Trust. In The Human-Computer Interaction
Handbook: Fundamentals, Evolving Technologies and
Emerging Applications Sears, Andrew and Jacko, Julie A
(Eds.) CRC Press, Boca Raton, FL, USA, 639-658

[15] Nielsen, J. Ten Usability Heuristics
http://www.useit.com/papers/heuristic/heuristic_list.html

[16] Pane, J. F., Ratanamahatana, C. A., and Myers, B. A. 2001.
Studying the language and structure in non-programmers'
solutions to programming problems. International Journal of
Human-Computer Studies 54,2 (2001), 237-264

[17] Pulman, S. G. 1996. Controlled Language for Knowledge
Representation. In: CLAW96: Proceedings of the First
International Workshop on Controlled Language
Applications (Leuven, Belgium, March, 1996), 233-242

[18] Rode, J., Rosson, M. B., and Pérez-Quiñones, M. A. 2004.
End-users' Mental Models of Concepts Critical to Web
Application Development. In: IEEE Symposium on Visual
Languages and Human Centric Computing (VLHCC'04)
(Washington, DC, USA, September, 2004), IEEE, 215-222

[19] Saltzer, J. H. and Schroeder, M. D. 1975. The Protection of
Information in Computer Systems. Proceedings of the IEEE
63,9 (1975), 1278-1308

[20] Sammet, J. E. The early history of COBOL. In History of
Programming Languages Wexelblat, Richard L (Ed.) New
York, NY, USA, ACM, 199-143

[21] Sandhu, R. S., Coyne, E. J., Feinstein, H. L., and Youman,
C. E. 1996. Role-Based Access Control Models. IEEE
Computer 29,2 (1996), 38-47

[22] Whitten, A. and Tygar, J. D. 1999. Why Johnny Can't
Encrypt. In: Proceedings of the 8th USENIX Security
Symposium (Washington, DC, USA, August, 1999), 169-184

[23] Yee, K.-P. 2002. User Interaction Design for Secure
Systems. In: Proceedings of 4th International Conference on
Information and Communication Security (Singapore,
December, 2002), Springer, Berlin, Germany

[24] Zurko, M. E., Simon, R., and Sanfilippo, T. 1999. A User-
Centered, Modular Authorization Service Built on an RBAC
Foundation. In: IEEE Symposium on Security and Privacy
(Oakland, CA, USA, May, 1999), IEEE, 57-71

