
On the Usability of Firewall Configuration

Tina Wong
Carnegie Mellon University

tinawong@cmu.edu

ABSTRACT
The firewalls in an enterprise network must be configured
correctly or the internal corporate network can be infiltrated,
leading to serious security, financial and performance
implications. However, firewall configuration is a complex and
error-prone task. Configuration languages are like assembly
languages: they are low-level and vendor-specific. Moreover,
usually multiple firewalls must be configured to protect an
enterprise network. This task has been compared to programming
a distributed system with an assembly language. While many
researchers have tackled the firewall configuration problem from
various perspectives, including new models, languages and
complete systems, little has been done from the usability
standpoint. Recently, studies have demonstrated that
administrators strongly prefer textual or command line interfaces
(CLIs) over GUIs. Most administrators are reluctant to invest time
to learn new models, languages or systems for their everyday
tasks. In this paper, we study the firewall configuration problem
from the usability perspective. We first propose models to
measure the lexical and structural complexity of firewall
configuration. Using these models, we examine where complexity
lies in the configurations of real networks. With the assumption
that CLI will remain as the main user interface for administrators,
we suggest visualizations to make firewall configuration more
usable.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information Systems]:
Security and Protection

General Terms
Management, Security, Human Factors, Languages

Keywords
Firewalls, Routers, Configuration, Usability, Complexity

1. INTRODUCTION
It is well known that networks are difficult to manage and
operate. Administrator errors are common and root causes of
failures in networks [14]. In particular, configuring a network is
complex and error-prone. The firewalls in an enterprise network
must be configured correctly or the internal corporate network can
be infiltrated, leading to serious security, financial and
performance implications. However, the situation is bleak. Wool
[18] conducted a quantitative study on 37 firewalls, and found

that all of them have some form of misconfigurations. The
author’s conclusion is “complex rule sets are apparently too
difficult for administrators to manage effectively.”
There are several reasons behind the firewall configuration
problem. It is a low-level, device-specific task. To protect a
network, one needs to configure multiple firewalls in the network
separately. A change in one firewall can potentially affect other
firewalls, or even the whole network. The more complex firewalls
can contain hundreds or even thousands or configuration
commands. Furthermore, many have described firewall
configuration languages as “arcane” and compared them to
assembly languages. Configuration languages are designed by
router vendors, with router processing in mind, and do not
necessarily have the appropriate constructs for network
administrators to specify their intent.
Moreover, as a network evolves, its configurations become even
more difficult to understand, extend and debug. In Wool’s study
[18], the author makes the hypothesis that the most expensive and
highest performance firewalls in his study would be the least
misconfigured, as the organizations which deployed these
firewalls should have more human resources to manage the
networks. To his surprise, the results are the opposite. It turns out
that these more powerful firewalls have longer histories and have
had multiple engineers managing them, therefore making them
more complex.
Many researchers have tackled the firewall configuration problem
using “clean-slate” approaches – new configuration languages,
user interfaces and complete systems that are designed to be high-
level. However, we believe a gap exists between the research and
network administration communities. Haber and Bailey [7]
conclude in their ethnographic field study of system
administrators that “we witnessed enough problems to believe that
administration tools are often created without sufficient
understanding of the full context of administration work.” Both
Haber and Bailey [7] and Botta el al [3] have found that
administrators strongly prefer textual or command line interfaces
(CLIs) over GUIs, even though many of them lack a formal
background in computer science. Administrators perceived CLIs
as faster, more flexible, trustworthy, reliable, robust and accurate.
GUIs can sometimes hide important details or are buggy, which
means administrators face risks in relying solely on them. Botta el
al [3] states that “With a plain text editor like vi, the user
(administrator) can be confident that what you see is what you
get.” This is contrary to the common understanding of the
WYSIWYG principle, which applies mainly to GUIs for end-
users, but not administrators.
In this paper, we make the assumption that CLI is the main user
interface for firewall administrators. With this assumption in
mind, we set out to find ways to support and simplify the act of
configuring firewalls. We first propose complexity models to

Copyright is held by the author/owner. Permission to make digital or
hard copies of all or part of this work for personal or classroom use is
granted without fee.

Submitted to Workshop on Usable IT Security Management, part of
Symposium On Usable Privacy and Security (SOUPS) 2008, July 23-25,
2008, Pittsburgh, PA, USA.

measure the lexical and structural complexity of firewall
configuration (Section 3). These models allow us to
systematically examine where the complexity lies in firewall
configuration; the places in which administrators need help in
reducing their mental model burdens. We apply the models on the
configuration files from a university campus network and describe
our observations (Section 4). Based on these observations, we
propose several visualization tools that can be integrated into the
configuration environment without replacing the CLI as the main
user interface (Section 5). Finally, we compare and contrast our
work with related work (Section 6).

2. BACKGROUND
In this section, we give a brief overview of firewall configuration.
The main function of a firewall is to examine packets and decide
to either allow or disallow packets according to a configured
security policy. There are two types of firewalls: (1) personal
firewall which protects the machine on which it is installed, and
(2) enterprise firewall which sits between the Internet and the
corporate network and protects the latter from the former. The
security policy and configuration of enterprise firewalls are much
more complex and the focus of this paper. Note that routers also
implement firewall functions, that is, packet filtering, among
other things. Thus, some networks may use routers as their
firewalls, and do not have firewall-only devices. We use the
words router and firewall interchangeably.
Router vendors have different configuration languages. The most
widely used languages are those from Cisco and Juniper. For
simplicity, we use a simplified form of the Cisco IOS syntax in
the examples throughout this paper. The main configuration
command for firewalls is a packet filter, which takes the
following syntax:
 access-list name {permit|deny} protocol source dest
A packet filter matches packets based on the protocol, source IP
address and destination IP address values, and sometimes other
optional values such as port number, and either permits or denies
the packets. There can be multiple rules in a single packet filter.
For example, the following packet filter “101” has four rules:
 access-list 101 deny ip 10.0.0.0/8 any

 access-list 101 deny ip 127.0.0.0/8 any

 access-list 101 deny ip 192.168.0.0/16 any

 access-list 101 permit any
The IP addresses in the prefixes 10.0.0.0/8, 127.0.0.0/8 and
192.168.0.0/16 are reserved addresses and should be not used in
the public Internet. This packet filter blocks packets with these
private source addresses (spoofed packets), and allows all other
packets. In current firewall configuration languages, “first rule
wins”: when a packet is matched by a rule, the rest of the rules are
not executed. Packet filters are applied to router interfaces. For
example, packet filter “101” is applied on interface “Ethernet0”,
on both inbound and outbound traffic:
interface Ethernet0

 ip address 1.2.3.4 255.255.255.0

 ip access-group 101 in

 ip access-group 101 out
If “Ethernet0” is the interface on which inbound Internet traffic
arrives on, then packets with spoofed IP addresses are not allowed
to enter the internal network. Similarly, such packets are not

allowed to leave the internal network for the public Internet.
Packets with spoofed IP addresses are usually used by attackers to
hide their identity.

3. COMPLEXITY MODELS
A network with well-maintained firewall configurations is more
dependable and reliable. Maintainability is defined as “the ease
with which a software system or component can be modified to
correct faults, improve performance, or other attributes, or adapt
to a changed environment” [9]. In large-scale software
development, maintainability of source code is measured by
quantitative models. Halstead Complexity [8] and Cyclomatic
Complexity [11] are two widely used models. No such models
exist for firewall configurations. In this section, we propose
network-wide models to measure the lexical and structural
complexities of a network’s firewall configurations. These models
can help to identify configuration commands within a network
that are complex and thus need to be carefully maintained. Even
though we present our complexity models in the context of
firewalls, they are applicable to the configuration of other
network devices, such as routers.

3.1 Lexical Complexity
The Halstead Complexity [8] measures the lexical complexity of
source code. It is based on the number of operators and operands
in source code. Five measurements are calculated: Program
Length, Program Vocabulary, Program Volume, Difficulty and
Effort. In particular, the Program Vocabulary and Program
Volume measurements are shown to be correlated with the
maintainability of source code. The Program Vocabulary n is the
sum of the number of distinct operators and the number of distinct
operands. It is related to the mental capacity demands of the
source code on the software developer. A large vocabulary size
means high demands on the developer. The Program Volume v is
calculated as v = N * (log n), where N is the sum of the total
number of operators and the total number of operands.
We apply concepts from Halstead Complexity to firewall
configuration. We model configuration commands as operators
and the corresponding parameters to the commands as operands.
For example, in Cisco IOS, the following commands configure IP
addresses for name servers:
 ip name-server 1.2.3.4

ip name-server 1.2.3.5

ip name-server 1.2.3.6

In this case, the operators are the commands “ip” and “name-
server”, and the operands are the IP addresses “1.2.3.4”, “1.2.3.5”
and “1.2.3.6”. The Program Vocabulary size and the Program
Volume measure would increase when additional name servers
are configured. Recall the packet filter “101” from the last
section:
 access-list 101 deny ip 10.0.0.0/8 any

 access-list 101 deny ip 127.0.0.0/8 any

 access-list 101 deny ip 192.168.0.0/16 any

 access-list 101 permit any
The command “access-list” is a keyword in IOS and are the
operators, while the parameters “101”, “deny”, “permit”, “ip”,
“any” and the IP addresses (prefixes) are the operands. The
parameter “101” is the name of this packet filter. Packet filters
such as the one above are usually copied across multiple firewalls

in a network. When a packet filter is copied verbatim to another
firewall the network-wide Program Volume measure increases but
the Program Vocabulary size does not. However, if for whatever
reasons, the name of the packet filter changes during copying but
the implementation remains the same, the Program Vocabulary
size increases because of the extra name, which demands
additional mental capacity from the network administrator.

3.2 Structural Complexity
One of the weaknesses of the Halstead Complexity is that it only
considers the lexical complexity of source code. Cyclomatic
Complexity measures the structural complexity of source code,
and is used together with Halstead Complexity to determine the
maintainability of software. Cyclomatic Complexity calculates
the number of linearly independent paths in source code. It is
calculated as CC = E – V + 2p, where E is the number of edges, V
is the number of nodes, and p is the number of connected
components, and the source code is modeled as a connected graph
of control flows. CC is traditionally used as a static analysis tool
to assess the complexity of source code during different phases of
software development, and the risks involved in modifications of
the source code afterwards.
We borrow concepts from Cyclomatic Complexity to measure the
complexity of a network’s firewall configurations. We first model
a network’s firewall configurations as flow graphs. A flow graph
is a directed graph G=<V,E,R>, in which V is the set of vertices, E
is the set of edges, and R is a set of functions that annotate the
edges. A vertex v is associated with a rule. There is an edge e
from v1 to v2 if there is a flow of control along the rules from v1
to v2, and a function r annotates e with the set of packets that can
flow on e. Note that no explicit flow of control exists between the
configurations of two firewalls. Firewall configuration is a
device-specific task. Thus, when applied to a network with
multiple firewalls, a flow in our model is an implicit flow of
control. In our model, there is a flow of control between two
vertices if the following conditions are satisfied: (1) the set of
packets filtered by v1 and the set of packet filtered by v2 intersect,
and (2) the vertices belong to the same packet filter or there exists
a path between the two vertices according to the topology of the
underlying network. Intuitively, a flow of control exists between
two vertices if the administrator needs to form mental pictures of
the relationship between the corresponding rules, for example, if
the order of execution of the corresponding rules changes the
resulting packet flow.
We first illustrate Cyclomatic Complexity with a single firewall
example. Recall the “101” packet filter from the previous section:
 access-list 101 deny ip 10.0.0.0/8 any

 access-list 101 deny ip 127.0.0.0/8 any

 access-list 101 deny ip 192.168.0.0/16 any

 access-list 101 permit any

The source IP addresses (“10.0.0.0/8”, “127.0.0.0/8”,
“192.168.0.0/16”) are disjoint. The destination IP addresses
(“any”) are wildcards. Thus, in our model, there is no flow of
control for the “101” packet filter as the sets of packets filtered by
each rule do not intersect. The following packet filter “201” has a
flow of control according to our model because the packets being
filtered by the first rule is a subset of the second rule:
 access-list 201 deny tcp 192.168.1.0/24 any

 access-list 201 accept tcp 192.168.0.0/16 any

If we swap the order of the two rules, all packets in
192.168.0.0/16 will be allowed.
The following example illustrates Cyclomatic Complexity of an
enterprise network with two firewalls. This enterprise network
owns the IP address space 1.2.0.0/16, and its internal corporate
network utilizes a subset, 1.2.3.0/24. The first firewall F1 acts a
simple screening device. It denies access to the internal network
but allows access to public servers (e.g. Web, Mail) in the DMZ:
 access-list 301 deny tcp 1.2.3.0/24 any

 access-list 301 accept tcp any any

F2 protects the internal corporate network and denies everything:
 access-list 401 deny tcp 1.2.0.0/16 any

Even though the individual packet filters do not have a flow of
control within them, there is a flow of control between the packet
filters “301” and “401”, since “301” denies a subset of the packets
denied by “401”. If we swap the first rules of the two packet
filters, access to the public servers will be denied, for example.

4. WHERE THE COMPLEXITY LIES
In this section, we apply the lexical and structural complexity
models to packet filters defined in router configuration files from
production networks to examine where the complexity lies in real
life. We present our preliminary results here.

4.1 Data
Our data comes from a university campus network (NETU). We
also use knowledge about the best common practices employed
by security administrators. NETU has more than 50 routers. We
only focus on two border routers and two core routers which
implement most of NETU’s firewall functions.

Because of the nature of NETU, it performs limited packet
filtering. We suspect the degree of complexity is magnified in
enterprise networks. Nonetheless, we are examining the
complexity of the firewall configuration language in general, but
not of particular networks, so our results are still valid.

4.2 Observations
One main source of lexical complexity is the use of IP addresses
(and prefixes) in configurations. There can be many IP addresses
in one packet filter. Usually, the list of IP addresses in a packet
filter is a logical unit, either in the network protected by the
firewall(s) or in the Internet. For example:

• NETU owns eight public address blocks. NETU defines two
packet filters, p1 and p2, each matching all of the eight
prefixes. p1 prevents packets with spoofed source IP addresses
from leaving NETU’s network. p2 allows only packets
destined to IP addresses in one of the eight address blocks into
NETU’s network.

• NETU also defines two packet filters to prevent packets with
reserved IP addresses from leaving or entering NETU’s
network. There are four private address blocks, and these
prefixes are listed in both packet filters.

As NETU is multi-homed to two service providers, the above
packet filters are duplicated on two routers. The Program Volume
reflects the number of times IP addresses are duplicated in the
configurations. Often, configurations are modified via “cut-n-
paste”, and an administrator needs to ensure all IP addresses are

duplicated appropriately during modification. The Program
Vocabulary reflects the number of IP addresses an administrator
needs to remember. In fact, since our model treats each unique IP
address as one unit of vocabulary, it yields a conservative
measurement of lexical complexity. This is because an IP address,
more precisely, a prefix, can embody multiple addresses. For
example, 1.2.3.0/24 represents 256 addresses.

Another source of lexical complexity is assigned names. Firewall
administrators assign names to packet filters. When used properly,
an administrator remembers and uses these names instead of the
details of the packet filters. However, there are several ways
assigned names can add to the mental model burdens of
administrators. Within a single firewall, there is usually more than
one packet filter, each assigned different names. But:

• Some of the packet filters may not be used by the firewall. A
packet filter is active only when it is applied to one of the
interfaces of the firewall. The Program Vocabulary reflects
the total number of names, but not all the names are
necessary.

• Differently named packet filters can be equivalent. This
happens when two packet filters are exactly the same except
for their names, or that they use different rules to achieve the
same function. The Program Vocabulary again reflects the
total number of names, which can be reduced if there is only
a single packet filter.

Across multiple firewalls, packet filters can be assigned the same
names. There are several possible scenarios. Two packet filters
with the same name, can implement the same function on multiple
firewalls, can implement different functions on multiple firewalls,
or can have functions that intersect one another. For each packet
filter named p, an administrator either needs to remember the
meaning of p on each firewall that defines p, or reconstruct its
meaning by reading p’s rules in low-level configuration
commands. Sometimes, packet filters that are equivalent, either
syntactically or semantically are given different names on
different firewalls. Again, an administrator needs to either
remember that these packet filters are indeed equivalent, or
reconstruct this information on-the-fly.

We also observe structural complexity in NETU’s configurations.
Recall that NETU owns eight public address blocks. We have
described two packet filters that match on these blocks.
Additional packet filters that match on subsets of these blocks are
defined on multiple routers in NETU. For example:

• NETU has HTTP, SMTP, DNS and NTP servers, each of
which is assigned a public address from one of the eight
public address blocks. Packet filters are defined on the
border routers and applied to the outgoing traffic from these
servers so that the traffic is sampled for accounting purposes.
Other packet filters are defined on the core routers and
applied to the incoming traffic to these servers to allow for
port exceptions for Microsoft services.

• NETU restricts Virtual Private Network (VPN) access to
only certain address pairs. A packet filter is defined and
applied to both inbound and outbound VPN traffic.

• Residence hall users are rate-limited to use a certain amount
of bandwidth. Packet filters are defined that match the
address blocks belonging to the residence halls.

Recall that structural complexity measures the number of paths in
configurations. In our model, there is an edge between two
vertices if the packets matched by the rules represented by the
vertices intersect. We have described several cases above in
which this intersection happens in NETU. There can be many
chains of packet filters in a network, and an administrator needs
to ensure each one of these chains yields the intended set of
packets during the configuration and modification each of the
packet filters along the chain. Furthermore, packet filters can be
applied on the inbound or outbound direction, and an
administrator also needs to keep a mental model of the network
topology and its interaction with all the packet filters and the
direction of their applications.

Note that not all uses of packet filters are directly security related.
Some packet filters are used to identify packets for accounting or
traffic engineering. In general, an administrator needs to juggle
several additional mental models besides security when working
with packet filters.

5. USABILITY SUGGESTIONS
In this section, we suggest ways to improve the usability of
firewall configuration. Our suggestions follow three simple design
principles:

• Treat CLI as the main user interface. Administrators prefer to
use CLIs and distrust GUIs. We make the assumption that
administrators do most of their configuration writing and
modification with CLI, and use other tools as support.

• Keep the existing configuration languages. Although these
languages are full of problems, in the short term,
administrators are reluctant to learn new languages and
device vendors do not see the incentive to deploy them.

• Provide visualizations for the most complex parts of a
network’s firewall configuration. These parts are either in
design documents or mental images in an administrator’s
head. Design documents are often not updated promptly and
following them can be misleading and lead to more errors.

Our complexity models show that four aspects of firewall
configuration are especially complex. The four aspects are (1) IP
addresses, (2) packet filter names, (3) interfaces, and (4) packet
filter interactions. Below, we discuss ways to visualize each of the
four aspects and how to tie the information together in a unified
way. The goal is to help administrators build mental images of the
most complex parts of his network’s firewall configurations,
while allowing him to continue using CLI as the main user
interface. The visualizations gather information that are scattered
across the network and present them to the administrator in a
context appropriate way.

5.1 IP Addresses
When configuring the source and destination IP addresses in a
packet filter, an administrator is clear on his intent for the
addresses. For example, the addresses can represent internal
subnets, private address space, known malicious networks, and so
on. Visualizations can fill in the details that the administrator

may not always remember. The same addresses can be in packet
filters within the current firewall and firewalls across the
networks. Moreover, prefixes that cover the addresses can also
exist in other packet filters. Showing these related addresses gives
an administrator a global picture of how his network treats the
addresses in question. The following information can be
visualized:

• Packet filters matching the exact IP address, whether it is on
the same firewall or on another firewall. This information
helps the administrator to see if he can “cut-and-paste”
configuration commands from elsewhere, or if the function
he is trying to implement already exists.

• Packet filters matching a superset of the IP address. This
information if exists show that the IP address in question is
being treated as an exception.

• Packet filters matching a subset of the IP address (prefix).
This information reminds the administrator if there are
exceptions in network regarding the IP address (prefix) in
question.

There are potentially a large number of related IP addresses. IP
addresses are not discrete information. They are logically
organized in a tree. Existing techniques for visualization
information in a tree can be used to effectively and efficiently
display the IP address hierarchy.

5.2 Names
In the ideal case, a packet filter is defined only once, maintained
by a central repository and applied to a firewall or multiple
firewalls. In this way, a packet filter that is meant to be the same
on multiple firewalls will remain the same even after
modifications. The more sophisticated enterprise networks use a
database to maintain their configurations. However, researchers
have observed that such a database is usually out-of-date, so in
reality “the network is the database” [4]. Visualizations can help
administrator handle this complexity by displaying:

• Packet filters with the same name and highlight the
differences.

• Packet filters with similar names and highlight the
differences. For example, “bogon” and “Bogon” are similar
names, and “internal1” and “internal” are also similar names.
Configurations can be manipulated by several administrators,
each with different coding styles.

Displaying these names in alphabetical order might not be the
most usable to administrators. Some packet filters are more
relevant than others, depending on the context. Instead, names can
be listed in the order of topological closeness to the firewall being
configured. In other words, names that are within the same
firewall are listed first, then the names that are on firewalls one
hop away next, and so on. Also, some packet filters are not
actively in use. It is possible to have many definitions of packet
filters on a firewall, but only a handful of them are active. The
names of these packet filters can be displayed last because they
are not as important to the administrators.

5.3 Interfaces and Interactions
A packet filter is not active unless it is applied on an interface of
the firewall being configured. However, interface definitions are
separate from packet filter definitions in the configurations.

Visualizations can show the details of the interface in question
when an administrator is examining a packet filter so he does not
need to manually search for the details.
Interfaces are connected together which forms the physical
topology of a network. Packet filters can potentially interfere with
one another if the packets they match intersect and if the
underlying topology allows these filters to be applied in sequence.
Visualizations can show these interactions explicitly.

5.4 Information Linking
A network can contain many IP addresses, names, interfaces, and
interactions in its firewall configurations. Visualizations should
only display information that is relevant to the task at hand. In
their study on visualizing large-volume time-series data for
network management, McLachlan et al [12] found that explicit
linking is effective in coordinating multiple views of related
information. The information in Section 5.1-5.3 are should be tied
to the main CLI. When an administrator is working on a specific
packet filter of a particular firewall, the relevant information
about IP addresses, names, interfaces and interactions are
explicitly linked in side windows. For example, as an
administrator steps through each rule in a packet filter using a text
editor, the IP addresses window is updated for each rule.

6. RELATED WORK
Many researchers have proposed solutions to the firewall
configuration problems. This paper differs in that we tackle the
problems from a usability perspective. We suggest ways to
improve the usability of writing and modifying configurations
based on models that measure lexical and structural complexity of
firewall configuration. Our goal is to support and augment the
CLI with appropriate visualizations.

As far as we know, Geng, Flinn and DeDourek [5] is the only
paper on usable firewall configuration. They elegantly state the
problems with current firewall configuration, and propose a
simulation tool to allow administrators to visualize network traffic
flow.

PolicyVis [17] is a visualization tool for firewall packet filters. It
has a query-based GUI which allows administrators to enter
parameters of interest (i.e. source and destination IP addresses and
port numbers) to generate a visualization of the packets being
permitted or denied by the configured filters.

The authors of Fang [13] propose a query-and-answer system that
allows administrators to understand deployed firewall packet
filters in a network. Fang is easy to use as it works at a high level
of abstraction, allowing administrators to ask questions such as
“what machines can reach which services on my network?” on
deployed configurations.

Firmato [1] is a complete firewall management solution. It defines
a model to specify security policy and network topology, a high-
level language to specify an instance of the model, and a
translator from such an instance to low-level firewall
configuration commands.

The authors of EDGE [4] argue that router configuration is hard
and manual configuration of routers should be replaced by
automated provisioning. EDGE is a system that analyzes existing

network state and uses the results to fill a database with
information for future configuration changes.

Many have proposed methods to detect misconfigurations in
firewalls. Most are rule-based checkers based on best common
practices or well-known security vulnerabilities [15, 16, 20].
FIREMAN [19] models packet filters in firewalls using binary
decision diagrams, and detects redundant and conflicting rules
that can be misconfigurations.

There are many tools for visualizing real time network traffic
going through a firewall [2, 6, 10]. One goal is to detect network
attacks (DDoS, worms, viruses) visually. Another goal is to see if
the firewall is properly configured (e.g. by examining visually if
certain traffic is being allowed by the firewall unintentionally).
The problem with the latter goal is one cannot visualize the
complete firewall configuration by examining only real time
network traffic. Thus, not all misconfigurations can be detected,
only the ones that are triggered and present in the traffic.

7. CONCLUSIONS
In this paper, we have proposed complexity models to measure
the configuration complexity of firewalls. We have observed that
the main source of complexity in firewall configuration is in the
configurations of IP addresses, names, interfaces and interactions
between firewalls. Making the assumption that administrators
prefer to use CLI as their main user interface, we have described
several visualizations to support with the firewall configuration
task. For future work we plan to prototype the visualizations and
evaluate them with user studies.

ACKNOWLEDGMENTS
We would like to thank the networks who gave us access to their
router configuration files. This work would not have been
possible without their help.

REFERENCES

[1] Y. Bartal, A. Mayer, K. Nissim and A. Wool. Firmato: A

Novel Firewall Management Toolkit. ACM Transactions on
Computer Systems, 2004.

[2] E. Bethel, S. Campbell, E. Dar, K. Stockinger, and K. Wu.
Accelerating Network Traffic Analysis Using Query-Driven
Visualization. In Proceedings of IEEE Symposium on Visual
Analytics Science and Technology. 2006.

[3] D. Botta, R. Werlinger, A. Gagne, K. Beznosov, L. Iverson,
S. Fels, B. Fisher. Towards Understanding IT Security
Professionals and Their Tools. In Proceedings of Symposium
On Usable Privacy and Security (SOUPS), July 2007.

[4] D. Caldwell, A. Gilbert, J. Gottlieb, A. Greenberg, G.
Hjalmtysson, and J. Rexford. The Cutting EDGE of IP
Router Configuration. In Proceedings of HotNets-II, 2003.

[5] W. Geng, S. Flinn, and J. DeDourek. Usable Firewall
Configuration. In Proceedings of the Third Annual
Conference on Privacy, Security and Trust. Oct 2005.

[6] J. Goodall, W. Lutters, P. Pheingans and A. Komldi.
Preserving the Big Picture: Visual Network Traffic Analysis

with TNV. In Proceedings of Workshop on Visualization for
Computer Security. Oct. 2005.

[7] E. Haber and J. Bailey. Design Guidelines for System
Administration Tools Developed through Ethnographic Field
Studies. In Proceedings of Computer Human Interaction on
Management of Information Technology (CHIMIT), Mar.
2007.

[8] M. H Halstead. Elements of Software Science, Operating,
and Programming Systems Series Volume 7. New York, NY:
Elsevier, 1977.

[9] Institute of Electrical and Electronics Engineers. IEEE
Standard Computer Dictionary: A Compilation of IEEE
Standard Computer Glossaries. New York, NY: 1990.

[10] C. Lee, J. Trost, N. Gibbs, R. Beyah, and J. Copeland. Visual
Firewall: Real-time Network Security Monitor. In
Proceedings of Workshop on Visualization for Computer
Security. Oct 2005.

[11] T. McCabe and C. W. Butler. Design Complexity
Measurement and Testing. Communications of the ACM 32,
December 1989.

[12] P. McLachlan, T. Munzner, E. Koutsofios, and S. North.
LiveRAC: Interactive Visual Exploration of System
Management Time-Series Data. In Proceedings of CHI, Apr.
2008.

[13] A. Mayer, A. Wool and E. Ziskind. Fang: A Firewall
Analysis Engine. In Proceedings of IEEE Security and
Privacy, May 2000.

[14] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why do
Internet services fail, and what can be done about it? 4th
USENIX Symposium on Internet Technologies and Systems
(USITS '03), March 2003.

[15] Router Security Configuration Guide. System and Network
Attack Center, National Security Agency, 2003. Available at
http://www.nsa.gov/snac/routers/cisco scg-1.1b.pdf

[16] The Router Audit Tool (RAT).
http://www.cisecurity.org/bench cisco.html.

[17] T. Tran, E. Al-Shaer, and R. Boutaba. PolicyVis: Firewall
Security Policy Visualization and Inspection. In Proceedings
of 21st Large Installation System Administration Conference,
Nov. 2007.

[18] A. Wool. A Quantitative Study of Firewall Configuration
Errors. IEEE Computer, June 2004.

[19] L. Yuan, J. Mai, Z. Su, H. Chen, C.N. Chuah and P.
Mohapatra. FIREMAN: A Toolkit for FIREwall Modeling
and Analysis. In Proceedings of IEEE Security and Privacy
2005.

[20] D. Zerkle and K. Levitt. NetKuang – A Multi-Host
Configuration Vulnerability Checker. In Proceedings of
USENIX Security Symposium, Jul 1996.

	1. INTRODUCTION
	2. BACKGROUND
	3. COMPLEXITY MODELS
	3.1 Lexical Complexity
	3.2 Structural Complexity
	4. WHERE THE COMPLEXITY LIES
	4.1 Data
	4.2 Observations

	5. USABILITY SUGGESTIONS
	5.1 IP Addresses
	5.2 Names
	5.3 Interfaces and Interactions
	5.4 Information Linking

	6. RELATED WORK
	7. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

