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ABSTRACT 
The firewalls in an enterprise network must be configured 
correctly or the internal corporate network can be infiltrated, 
leading to serious security, financial and performance 
implications. However, firewall configuration is a complex and 
error-prone task. Configuration languages are like assembly 
languages: they are low-level and vendor-specific. Moreover, 
usually multiple firewalls must be configured to protect an 
enterprise network. This task has been compared to programming 
a distributed system with an assembly language. While many 
researchers have tackled the firewall configuration problem from 
various perspectives, including new models, languages and 
complete systems, little has been done from the usability 
standpoint. Recently, studies have demonstrated that 
administrators strongly prefer textual or command line interfaces 
(CLIs) over GUIs. Most administrators are reluctant to invest time 
to learn new models, languages or systems for their everyday 
tasks. In this paper, we study the firewall configuration problem 
from the usability perspective. We first propose models to 
measure the lexical and structural complexity of firewall 
configuration. Using these models, we examine where complexity 
lies in the configurations of real networks. With the assumption 
that CLI will remain as the main user interface for administrators, 
we suggest visualizations to make firewall configuration more 
usable.  

Categories and Subject Descriptors 
K.6.5 [Management of Computing and Information Systems]: 
Security and Protection 

General Terms 
Management, Security, Human Factors, Languages 

Keywords 
Firewalls, Routers, Configuration, Usability, Complexity 

1. INTRODUCTION 
It is well known that networks are difficult to manage and 
operate. Administrator errors are common and root causes of 
failures in networks [14]. In particular, configuring a network is 
complex and error-prone. The firewalls in an enterprise network 
must be configured correctly or the internal corporate network can 
be infiltrated, leading to serious security, financial and 
performance implications. However, the situation is bleak. Wool 
[18] conducted a quantitative study on 37 firewalls, and found 

that all of them have some form of misconfigurations. The 
author’s conclusion is “complex rule sets are apparently too 
difficult for administrators to manage effectively.” 
There are several reasons behind the firewall configuration 
problem. It is a low-level, device-specific task. To protect a 
network, one needs to configure multiple firewalls in the network 
separately. A change in one firewall can potentially affect other 
firewalls, or even the whole network. The more complex firewalls 
can contain hundreds or even thousands or configuration 
commands. Furthermore, many have described firewall 
configuration languages as “arcane” and compared them to 
assembly languages. Configuration languages are designed by 
router vendors, with router processing in mind, and do not 
necessarily have the appropriate constructs for network 
administrators to specify their intent.  
Moreover, as a network evolves, its configurations become even 
more difficult to understand, extend and debug. In Wool’s study 
[18], the author makes the hypothesis that the most expensive and 
highest performance firewalls in his study would be the least 
misconfigured, as the organizations which deployed these 
firewalls should have more human resources to manage the 
networks. To his surprise, the results are the opposite. It turns out 
that these more powerful firewalls have longer histories and have 
had multiple engineers managing them, therefore making them 
more complex. 
Many researchers have tackled the firewall configuration problem 
using “clean-slate” approaches – new configuration languages, 
user interfaces and complete systems that are designed to be high-
level. However, we believe a gap exists between the research and 
network administration communities. Haber and Bailey [7] 
conclude in their ethnographic field study of system 
administrators that “we witnessed enough problems to believe that 
administration tools are often created without sufficient 
understanding of the full context of administration work.” Both 
Haber and Bailey [7] and Botta el al [3] have found that 
administrators strongly prefer textual or command line interfaces 
(CLIs) over GUIs, even though many of them lack a formal 
background in computer science. Administrators perceived CLIs 
as faster, more flexible, trustworthy, reliable, robust and accurate. 
GUIs can sometimes hide important details or are buggy, which 
means administrators face risks in relying solely on them. Botta el 
al [3] states that “With a plain text editor like vi, the user 
(administrator) can be confident that what you see is what you 
get.” This is contrary to the common understanding of the 
WYSIWYG principle, which applies mainly to GUIs for end-
users, but not administrators.  
In this paper, we make the assumption that CLI is the main user 
interface for firewall administrators. With this assumption in 
mind, we set out to find ways to support and simplify the act of 
configuring firewalls. We first propose complexity models to 
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measure the lexical and structural complexity of firewall 
configuration (Section 3). These models allow us to 
systematically examine where the complexity lies in firewall 
configuration; the places in which administrators need help in 
reducing their mental model burdens. We apply the models on the 
configuration files from a university campus network and describe 
our observations (Section 4). Based on these observations, we 
propose several visualization tools that can be integrated into the 
configuration environment without replacing the CLI as the main 
user interface (Section 5). Finally, we compare and contrast our 
work with related work (Section 6). 

2. BACKGROUND 
In this section, we give a brief overview of firewall configuration. 
The main function of a firewall is to examine packets and decide 
to either allow or disallow packets according to a configured 
security policy. There are two types of firewalls: (1) personal 
firewall which protects the machine on which it is installed, and 
(2) enterprise firewall which sits between the Internet and the 
corporate network and protects the latter from the former. The 
security policy and configuration of enterprise firewalls are much 
more complex and the focus of this paper. Note that routers also 
implement firewall functions, that is, packet filtering, among 
other things. Thus, some networks may use routers as their 
firewalls, and do not have firewall-only devices. We use the 
words router and firewall interchangeably.  
Router vendors have different configuration languages. The most 
widely used languages are those from Cisco and Juniper. For 
simplicity, we use a simplified form of the Cisco IOS syntax in 
the examples throughout this paper. The main configuration 
command for firewalls is a packet filter, which takes the 
following syntax: 
 access-list name {permit|deny} protocol source dest  
A packet filter matches packets based on the protocol, source IP 
address and destination IP address values, and sometimes other 
optional values such as port number, and either permits or denies 
the packets. There can be multiple rules in a single packet filter. 
For example, the following packet filter “101” has four rules:  
 access-list 101 deny ip 10.0.0.0/8 any 

 access-list 101 deny ip 127.0.0.0/8 any 

 access-list 101 deny ip 192.168.0.0/16 any 

 access-list 101 permit any 
The IP addresses in the prefixes 10.0.0.0/8, 127.0.0.0/8 and 
192.168.0.0/16 are reserved addresses and should be not used in 
the public Internet. This packet filter blocks packets with these 
private source addresses (spoofed packets), and allows all other 
packets. In current firewall configuration languages, “first rule 
wins”: when a packet is matched by a rule, the rest of the rules are 
not executed. Packet filters are applied to router interfaces. For 
example, packet filter “101” is applied on interface “Ethernet0”, 
on both inbound and outbound traffic: 
interface Ethernet0 

 ip address 1.2.3.4 255.255.255.0 

 ip access-group 101 in 

 ip access-group 101 out 
If “Ethernet0” is the interface on which inbound Internet traffic 
arrives on, then packets with spoofed IP addresses are not allowed 
to enter the internal network. Similarly, such packets are not 

allowed to leave the internal network for the public Internet. 
Packets with spoofed IP addresses are usually used by attackers to 
hide their identity.  

3. COMPLEXITY MODELS 
A network with well-maintained firewall configurations is more 
dependable and reliable. Maintainability is defined as “the ease 
with which a software system or component can be modified to 
correct faults, improve performance, or other attributes, or adapt 
to a changed environment” [9]. In large-scale software 
development, maintainability of source code is measured by 
quantitative models. Halstead Complexity [8] and Cyclomatic 
Complexity [11] are two widely used models. No such models 
exist for firewall configurations. In this section, we propose 
network-wide models to measure the lexical and structural 
complexities of a network’s firewall configurations. These models 
can help to identify configuration commands within a network 
that are complex and thus need to be carefully maintained. Even 
though we present our complexity models in the context of 
firewalls, they are applicable to the configuration of other 
network devices, such as routers.  

3.1 Lexical Complexity 
The Halstead Complexity [8] measures the lexical complexity of 
source code. It is based on the number of operators and operands 
in source code. Five measurements are calculated: Program 
Length, Program Vocabulary, Program Volume, Difficulty and 
Effort. In particular, the Program Vocabulary and Program 
Volume measurements are shown to be correlated with the 
maintainability of source code. The Program Vocabulary n is the 
sum of the number of distinct operators and the number of distinct 
operands. It is related to the mental capacity demands of the 
source code on the software developer. A large vocabulary size 
means high demands on the developer. The Program Volume v is 
calculated as v = N * (log n), where N is the sum of the total 
number of operators and the total number of operands.  
We apply concepts from Halstead Complexity to firewall 
configuration. We model configuration commands as operators 
and the corresponding parameters to the commands as operands. 
For example, in Cisco IOS, the following commands configure IP 
addresses for name servers: 
  ip name-server 1.2.3.4 

ip name-server 1.2.3.5 

ip name-server 1.2.3.6 

In this case, the operators are the commands “ip” and “name-
server”, and the operands are the IP addresses “1.2.3.4”, “1.2.3.5” 
and “1.2.3.6”. The Program Vocabulary size and the Program 
Volume measure would increase when additional name servers 
are configured. Recall the packet filter “101” from the last 
section:   
 access-list 101 deny ip 10.0.0.0/8 any 

 access-list 101 deny ip 127.0.0.0/8 any 

 access-list 101 deny ip 192.168.0.0/16 any 

 access-list 101 permit any 
The command “access-list” is a keyword in IOS and are the 
operators, while the parameters “101”, “deny”, “permit”, “ip”, 
“any” and the IP addresses (prefixes) are the operands. The 
parameter “101” is the name of this packet filter. Packet filters 
such as the one above are usually copied across multiple firewalls 



in a network. When a packet filter is copied verbatim to another 
firewall the network-wide Program Volume measure increases but 
the Program Vocabulary size does not. However, if for whatever 
reasons, the name of the packet filter changes during copying but 
the implementation remains the same, the Program Vocabulary 
size increases because of the extra name, which demands 
additional mental capacity from the network administrator. 

3.2 Structural Complexity 
One of the weaknesses of the Halstead Complexity is that it only 
considers the lexical complexity of source code. Cyclomatic 
Complexity measures the structural complexity of source code, 
and is used together with Halstead Complexity to determine the 
maintainability of software. Cyclomatic Complexity calculates 
the number of linearly independent paths in source code. It is 
calculated as CC = E – V + 2p, where E is the number of edges, V 
is the number of nodes, and p is the number of connected 
components, and the source code is modeled as a connected graph 
of control flows. CC is traditionally used as a static analysis tool 
to assess the complexity of source code during different phases of 
software development, and the risks involved in modifications of 
the source code afterwards.  
We borrow concepts from Cyclomatic Complexity to measure the 
complexity of a network’s firewall configurations. We first model 
a network’s firewall configurations as flow graphs. A flow graph 
is a directed graph G=<V,E,R>, in which V is the set of vertices, E 
is the set of edges, and R is a set of functions that annotate the 
edges. A vertex v is associated with a rule. There is an edge e 
from v1 to v2 if there is a flow of control along the rules from v1 
to v2, and a function r annotates e with the set of packets that can 
flow on e. Note that no explicit flow of control exists between the 
configurations of two firewalls. Firewall configuration is a 
device-specific task. Thus, when applied to a network with 
multiple firewalls, a flow in our model is an implicit flow of 
control. In our model, there is a flow of control between two 
vertices if the following conditions are satisfied: (1) the set of 
packets filtered by v1 and the set of packet filtered by v2 intersect, 
and (2) the vertices belong to the same packet filter or there exists 
a path between the two vertices according to the topology of the 
underlying network. Intuitively, a flow of control exists between 
two vertices if the administrator needs to form mental pictures of 
the relationship between the corresponding rules, for example, if 
the order of execution of the corresponding rules changes the 
resulting packet flow. 
We first illustrate Cyclomatic Complexity with a single firewall 
example. Recall the “101” packet filter from the previous section: 
 access-list 101 deny ip 10.0.0.0/8 any 

 access-list 101 deny ip 127.0.0.0/8 any 

 access-list 101 deny ip 192.168.0.0/16 any 

 access-list 101 permit any 

The source IP addresses (“10.0.0.0/8”, “127.0.0.0/8”, 
“192.168.0.0/16”) are disjoint. The destination IP addresses 
(“any”) are wildcards. Thus, in our model, there is no flow of 
control for the “101” packet filter as the sets of packets filtered by 
each rule do not intersect. The following packet filter “201” has a 
flow of control according to our model because the packets being 
filtered by the first rule is a subset of the second rule: 
 access-list 201 deny tcp 192.168.1.0/24 any 

 access-list 201 accept tcp 192.168.0.0/16 any 

If we swap the order of the two rules, all packets in 
192.168.0.0/16 will be allowed.  
The following example illustrates Cyclomatic Complexity of an 
enterprise network with two firewalls. This enterprise network 
owns the IP address space 1.2.0.0/16, and its internal corporate 
network utilizes a subset, 1.2.3.0/24. The first firewall F1 acts a 
simple screening device. It denies access to the internal network 
but allows access to public servers (e.g. Web, Mail) in the DMZ: 
 access-list 301 deny tcp 1.2.3.0/24 any 

 access-list 301 accept tcp any any 

F2 protects the internal corporate network and denies everything: 
 access-list 401 deny tcp 1.2.0.0/16 any 

Even though the individual packet filters do not have a flow of 
control within them, there is a flow of control between the packet 
filters “301” and “401”, since “301” denies a subset of the packets 
denied by “401”. If we swap the first rules of the two packet 
filters, access to the public servers will be denied, for example.  

4. WHERE THE COMPLEXITY LIES 
In this section, we apply the lexical and structural complexity 
models to packet filters defined in router configuration files from 
production networks to examine where the complexity lies in real 
life. We present our preliminary results here. 

4.1 Data 
Our data comes from a university campus network (NETU). We 
also use knowledge about the best common practices employed 
by security administrators. NETU has more than 50 routers. We 
only focus on two border routers and two core routers which 
implement most of NETU’s firewall functions. 

Because of the nature of NETU, it performs limited packet 
filtering. We suspect the degree of complexity is magnified in 
enterprise networks. Nonetheless, we are examining the 
complexity of the firewall configuration language in general, but 
not of particular networks, so our results are still valid.  

4.2 Observations 
One main source of lexical complexity is the use of IP addresses 
(and prefixes) in configurations. There can be many IP addresses 
in one packet filter. Usually, the list of IP addresses in a packet 
filter is a logical unit, either in the network protected by the 
firewall(s) or in the Internet. For example: 

• NETU owns eight public address blocks. NETU defines two 
packet filters, p1 and p2, each matching all of the eight 
prefixes. p1 prevents packets with spoofed source IP addresses 
from leaving NETU’s network. p2 allows only packets 
destined to IP addresses in one of the eight address blocks into 
NETU’s network.  

• NETU also defines two packet filters to prevent packets with 
reserved IP addresses from leaving or entering NETU’s 
network. There are four private address blocks, and these 
prefixes are listed in both packet filters.  

As NETU is multi-homed to two service providers, the above 
packet filters are duplicated on two routers. The Program Volume 
reflects the number of times IP addresses are duplicated in the 
configurations. Often, configurations are modified via “cut-n-
paste”, and an administrator needs to ensure all IP addresses are 



duplicated appropriately during modification. The Program 
Vocabulary reflects the number of IP addresses an administrator 
needs to remember. In fact, since our model treats each unique IP 
address as one unit of vocabulary, it yields a conservative 
measurement of lexical complexity. This is because an IP address, 
more precisely, a prefix, can embody multiple addresses. For 
example, 1.2.3.0/24 represents 256 addresses.  

Another source of lexical complexity is assigned names. Firewall 
administrators assign names to packet filters. When used properly, 
an administrator remembers and uses these names instead of the 
details of the packet filters. However, there are several ways 
assigned names can add to the mental model burdens of 
administrators. Within a single firewall, there is usually more than 
one packet filter, each assigned different names. But: 

• Some of the packet filters may not be used by the firewall. A 
packet filter is active only when it is applied to one of the 
interfaces of the firewall. The Program Vocabulary reflects 
the total number of names, but not all the names are 
necessary. 

• Differently named packet filters can be equivalent. This 
happens when two packet filters are exactly the same except 
for their names, or that they use different rules to achieve the 
same function. The Program Vocabulary again reflects the 
total number of names, which can be reduced if there is only 
a single packet filter.  

Across multiple firewalls, packet filters can be assigned the same 
names. There are several possible scenarios. Two packet filters 
with the same name, can implement the same function on multiple 
firewalls, can implement different functions on multiple firewalls, 
or can have functions that intersect one another. For each packet 
filter named p, an administrator either needs to remember the 
meaning of p on each firewall that defines p, or reconstruct its 
meaning by reading p’s rules in low-level configuration 
commands. Sometimes, packet filters that are equivalent, either 
syntactically or semantically are given different names on 
different firewalls. Again, an administrator needs to either 
remember that these packet filters are indeed equivalent, or 
reconstruct this information on-the-fly.  

We also observe structural complexity in NETU’s configurations. 
Recall that NETU owns eight public address blocks. We have 
described two packet filters that match on these blocks. 
Additional packet filters that match on subsets of these blocks are 
defined on multiple routers in NETU. For example: 

• NETU has HTTP, SMTP, DNS and NTP servers, each of 
which is assigned a public address from one of the eight 
public address blocks.  Packet filters are defined on the 
border routers and applied to the outgoing traffic from these 
servers so that the traffic is sampled for accounting purposes. 
Other packet filters are defined on the core routers and 
applied to the incoming traffic to these servers to allow for 
port exceptions for Microsoft services.  

• NETU restricts Virtual Private Network (VPN) access to 
only certain address pairs. A packet filter is defined and 
applied to both inbound and outbound VPN traffic.  

• Residence hall users are rate-limited to use a certain amount 
of bandwidth. Packet filters are defined that match the 
address blocks belonging to the residence halls.  

Recall that structural complexity measures the number of paths in 
configurations. In our model, there is an edge between two 
vertices if the packets matched by the rules represented by the 
vertices intersect. We have described several cases above in 
which this intersection happens in NETU. There can be many 
chains of packet filters in a network, and an administrator needs 
to ensure each one of these chains yields the intended set of 
packets during the configuration and modification each of the 
packet filters along the chain.  Furthermore, packet filters can be 
applied on the inbound or outbound direction, and an 
administrator also needs to keep a mental model of the network 
topology and its interaction with all the packet filters and the 
direction of their applications.  

Note that not all uses of packet filters are directly security related. 
Some packet filters are used to identify packets for accounting or 
traffic engineering. In general, an administrator needs to juggle 
several additional mental models besides security when working 
with packet filters.  

5. USABILITY SUGGESTIONS 
In this section, we suggest ways to improve the usability of 
firewall configuration. Our suggestions follow three simple design 
principles: 

• Treat CLI as the main user interface. Administrators prefer to 
use CLIs and distrust GUIs. We make the assumption that 
administrators do most of their configuration writing and 
modification with CLI, and use other tools as support. 

• Keep the existing configuration languages. Although these 
languages are full of problems, in the short term, 
administrators are reluctant to learn new languages and 
device vendors do not see the incentive to deploy them.   

• Provide visualizations for the most complex parts of a 
network’s firewall configuration. These parts are either in 
design documents or mental images in an administrator’s 
head. Design documents are often not updated promptly and 
following them can be misleading and lead to more errors.   

Our complexity models show that four aspects of firewall 
configuration are especially complex. The four aspects are (1) IP 
addresses, (2) packet filter names, (3) interfaces, and (4) packet 
filter interactions. Below, we discuss ways to visualize each of the 
four aspects and how to tie the information together in a unified 
way. The goal is to help administrators build mental images of the 
most complex parts of his network’s firewall configurations, 
while allowing him to continue using CLI as the main user 
interface. The visualizations gather information that are scattered 
across the network and present them to the administrator in a 
context appropriate way.  

5.1 IP Addresses 
When configuring the source and destination IP addresses in a 
packet filter, an administrator is clear on his intent for the 
addresses. For example, the addresses can represent internal 
subnets, private address space, known malicious networks, and so 
on.  Visualizations can fill in the details that the administrator 



may not always remember. The same addresses can be in packet 
filters within the current firewall and firewalls across the 
networks. Moreover, prefixes that cover the addresses can also 
exist in other packet filters. Showing these related addresses gives 
an administrator a global picture of how his network treats the 
addresses in question. The following information can be 
visualized: 

• Packet filters matching the exact IP address, whether it is on 
the same firewall or on another firewall. This information 
helps the administrator to see if he can “cut-and-paste” 
configuration commands from elsewhere, or if the function 
he is trying to implement already exists. 

• Packet filters matching a superset of the IP address. This 
information if exists show that the IP address in question is 
being treated as an exception. 

• Packet filters matching a subset of the IP address (prefix). 
This information reminds the administrator if there are 
exceptions in network regarding the IP address (prefix) in 
question. 

There are potentially a large number of related IP addresses. IP 
addresses are not discrete information. They are logically 
organized in a tree. Existing techniques for visualization 
information in a tree can be used to effectively and efficiently 
display the IP address hierarchy.  

5.2 Names 
In the ideal case, a packet filter is defined only once, maintained 
by a central repository and applied to a firewall or multiple 
firewalls. In this way, a packet filter that is meant to be the same 
on multiple firewalls will remain the same even after 
modifications. The more sophisticated enterprise networks use a 
database to maintain their configurations. However, researchers 
have observed that such a database is usually out-of-date, so in 
reality “the network is the database” [4]. Visualizations can help 
administrator handle this complexity by displaying: 

• Packet filters with the same name and highlight the 
differences.   

• Packet filters with similar names and highlight the 
differences. For example, “bogon” and “Bogon” are similar 
names, and “internal1” and “internal” are also similar names. 
Configurations can be manipulated by several administrators, 
each with different coding styles. 

Displaying these names in alphabetical order might not be the 
most usable to administrators. Some packet filters are more 
relevant than others, depending on the context. Instead, names can 
be listed in the order of topological closeness to the firewall being 
configured. In other words, names that are within the same 
firewall are listed first, then the names that are on firewalls one 
hop away next, and so on. Also, some packet filters are not 
actively in use. It is possible to have many definitions of packet 
filters on a firewall, but only a handful of them are active. The 
names of these packet filters can be displayed last because they 
are not as important to the administrators.  

5.3 Interfaces and Interactions 
A packet filter is not active unless it is applied on an interface of 
the firewall being configured. However, interface definitions are 
separate from packet filter definitions in the configurations. 

Visualizations can show the details of the interface in question 
when an administrator is examining a packet filter so he does not 
need to manually search for the details.   
Interfaces are connected together which forms the physical 
topology of a network. Packet filters can potentially interfere with 
one another if the packets they match intersect and if the 
underlying topology allows these filters to be applied in sequence. 
Visualizations can show these interactions explicitly.  

5.4 Information Linking 
A network can contain many IP addresses, names, interfaces, and 
interactions in its firewall configurations. Visualizations should 
only display information that is relevant to the task at hand. In 
their study on visualizing large-volume time-series data for 
network management, McLachlan et al [12] found that explicit 
linking is effective in coordinating multiple views of related 
information. The information in Section 5.1-5.3 are should be tied 
to the main CLI. When an administrator is working on a specific 
packet filter of a particular firewall, the relevant information 
about IP addresses, names, interfaces and interactions are 
explicitly linked in side windows. For example, as an 
administrator steps through each rule in a packet filter using a text 
editor, the IP addresses window is updated for each rule.  

6. RELATED WORK 
Many researchers have proposed solutions to the firewall 
configuration problems. This paper differs in that we tackle the 
problems from a usability perspective. We suggest ways to 
improve the usability of writing and modifying configurations 
based on models that measure lexical and structural complexity of 
firewall configuration. Our goal is to support and augment the 
CLI with appropriate visualizations.  

As far as we know, Geng, Flinn and DeDourek [5] is the only 
paper on usable firewall configuration. They elegantly state the 
problems with current firewall configuration, and propose a 
simulation tool to allow administrators to visualize network traffic 
flow.  

PolicyVis [17] is a visualization tool for firewall packet filters. It 
has a query-based GUI which allows administrators to enter 
parameters of interest (i.e. source and destination IP addresses and 
port numbers) to generate a visualization of the packets being 
permitted or denied by the configured filters.  

The authors of Fang [13] propose a query-and-answer system that 
allows administrators to understand deployed firewall packet 
filters in a network. Fang is easy to use as it works at a high level 
of abstraction, allowing administrators to ask questions such as 
“what machines can reach which services on my network?” on 
deployed configurations.  

Firmato [1] is a complete firewall management solution. It defines 
a model to specify security policy and network topology, a high-
level language to specify an instance of the model, and a 
translator from such an instance to low-level firewall 
configuration commands.   

The authors of EDGE [4] argue that router configuration is hard 
and manual configuration of routers should be replaced by 
automated provisioning. EDGE is a system that analyzes existing 



network state and uses the results to fill a database with 
information for future configuration changes.  

Many have proposed methods to detect misconfigurations in 
firewalls. Most are rule-based checkers based on best common 
practices or well-known security vulnerabilities [15, 16, 20]. 
FIREMAN [19] models packet filters in firewalls using binary 
decision diagrams, and detects redundant and conflicting rules 
that can be misconfigurations.  

There are many tools for visualizing real time network traffic 
going through a firewall [2, 6, 10]. One goal is to detect network 
attacks (DDoS, worms, viruses) visually. Another goal is to see if 
the firewall is properly configured (e.g. by examining visually if 
certain traffic is being allowed by the firewall unintentionally). 
The problem with the latter goal is one cannot visualize the 
complete firewall configuration by examining only real time 
network traffic. Thus, not all misconfigurations can be detected, 
only the ones that are triggered and present in the traffic.  

7. CONCLUSIONS  
In this paper, we have proposed complexity models to measure 
the configuration complexity of firewalls. We have observed that 
the main source of complexity in firewall configuration is in the 
configurations of IP addresses, names, interfaces and interactions 
between firewalls. Making the assumption that administrators 
prefer to use CLI as their main user interface, we have described 
several visualizations to support with the firewall configuration 
task. For future work we plan to prototype the visualizations and 
evaluate them with user studies.  
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