
Simplifying Network Management with Lockdown

Andrew Blaich
University of Notre Dame
Department of Computer
Science and Engineering

Notre Dame, IN 46556
ablaich@cse.nd.edu

Qi Liao
University of Notre Dame
Department of Computer
Science and Engineering

Notre Dame, IN 46556
qliao@cse.nd.edu

Aaron Striegel
University of Notre Dame
Department of Computer
Science and Engineering

Notre Dame, IN 46556
striegel@cse.nd.edu

Douglas Thain∗

University of Notre Dame
Department of Computer
Science and Engineering

Notre Dame, IN 46556
dthain@cse.nd.edu

ABSTRACT
The administrator of an enterprise network has a respon-
sibility to enforce the policies on the network. Yet, most
security mechanisms do not map well to the intended poli-
cies. This has been due to the prevalence of simplistic tools
that have poor enforcement but, yet are easy to manage.
While advanced commercial solutions do exist that have
stronger enforcement, they are significantly harder to man-
age. To that end, we propose Lockdown, a policy-oriented
security approach that builds on the concept of local context
to deliver a lighter weight approach to enterprise network
security while striking a balance between the level of en-
forcement and level of management available to the network
administrator. In this paper, we describe how the Lock-
down approach streamlines the process of network security
management from network auditing to visualization to pol-
icy mapping to enforcement to validation. We demonstrate
the strength of Lockdown through detailed assessments of
an enterprise university network to show how local context
significantly improves network management for the system
administrator.

1. INTRODUCTION
Network security policy is complicated and difficult to

fully manage in an enterprise setting. While the commer-
cial solutions provide a rich variety of mechanisms, they lack
a streamlined approach that would allow them to be setup
and managed efficiently. In a recent Computer Crime and
Security 2007 survey [25], the collected data showed that

∗This work was supported in part by the National Science
Foundation through the grants CNS03-47392 and CNS-05-
49087.

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.
Symposium on Usable Privacy and Security (SOUPS) 2008, July 23–25,
2008, Pittsburgh, PA USA
.

firefox

skype

Rules:
Allow out Port 80

Network

Port 80

Port 80

Allowed

Allowed

firefox

skype

Rules: Allow out firefox

Network

App=firefox

App=skype

Lockdown

Allowed

Denied

Application Path

User ID

Group ID

...

Protocol

Local IP/Port

Foreign IP/Port

Local Context

Protocol

Local IP/Port

Foreign IP/Port

Policy: Allow web-browsing with Firefox

Traditional Firewalls

Rules: Allow out Port 80

Policy: Allow web-browsing with Firefox

Enforcing

AuditingAnalyzing

Lockdown >> Enforcing

Figure 1: Adding local context to streamline rule
creation.

the commonly deployed security solutions are the simpler
and less effective ones. For instance, the survey showed that
the lower end tools which include traditional firewalls have
near ubiquitous deployment, found in upwards of 97% of the
networks surveyed. The higher end solutions, such as end-
point security client software/(NAC) have considerably less
deployment with their deployment in 2007 at 27 % down
from 31% in 2006.

In short, there appears to be two broad categories of so-
lutions for network administrators:

1. simple policy enforcement with easier manageability

2. rich policy enforcement with complex management

Clearly as evidenced by [25], network administrators are
choosing the first category of tools in favor of manageability



Central Repository

Monitor

Enforcer

data collection

Hosts

DB

. . .

Visualization & AnalysisPolicy Construction

3

4

61

human 
analysis

Policy Distribution2
5 Auditing

Internet

LAN

Figure 2: Lockdown System Architecture, the num-
ber is indicative of the closed loop Lockdown oper-
ates in, i.e. 1,2,...,6,1,2,...,6

over security. Notably, such tools often derive their ease of
management by implicitly trusting that Layer 3 (IP) and
Layer 4 (Port) map to user and application.

To further illustrate the problem with lower end tools in
regards to enforcement, consider an example based on ipt-
ables as shown in Figure 1. In the example, the desired
high level policy is to allow outbound connectivity for non-
secure web browsing. The natural rule for iptables or any
network firewall would be to allow outbound port 80 with
state preservation. Critically, the reliance on inference of
application from port number allows for other applications
not originally intended in the high level policy to gain ac-
cess out of the network. As a result, the security mechanism
of iptables would allow not only web browsing but also ap-
plications such as Skype or Gnutella that can arbitrarily
configure port numbers or tunnel directly over HTTP. Al-
though increasingly popular solutions such as deep packet
inspection can address those concerns, those solutions suf-
fer in the presence of user-agent spoofing and altogether fail
when faced with end-to-end encryption [2].

We posit that the perspective at which enforcement and
monitoring occurs needs to be shifted in such a way that
the local context, i.e. the why of a connection versus the
where, forms the foundation of the security approach. By
infusing enforcement with local context, high level policy can
be followed more stringently as is seen in the “Lockdown”
example of figure 1.

While enforcement with local context is certainly not a
new concept, we argue that the monitoring (gathering, au-
diting, analyzing) of local context has profound implications
for network management. Critically, local context strikes the
ideal balance between ensuring proper policy enforcement
and complexity of mechanism while also improving network
management.

To that end, we present the Lockdown security approach
in this paper. Lockdown is a streamlined management ap-
proach for the enterprise network based on local context.
Figure 2 gives an overview of the system architecture. Lock-
down has several components that make up the system:

1. Policy : Lockdown improves the mapping of policy to

mechanism by leveraging local context for rule con-
struction. Local context allows for Lockdown to offer
reasonable levels of expression while preserving clear
observability from the policy statement which the rules
originate from.

2. Enforcement : The Enforcer component allows for lo-
cal context rules to be enforced through the use of a
pluggable security module.

3. Monitor : The Monitor component enables the Lock-
down system to gather local context natively from the
hosts and forward it to a central repository.

4. Auditing : Auditing is used to validate that policy is
being followed.

5. Analysis & Visualization: These components allow for
easy management of the network through visualization
of the connections and discovering chains that occur
as a result of user + application interactions. The
data collected is in turn analyzed for patterns among
resource usage and potential problem areas.

Lockdown provides an economy of mapping mechanism to
policy that is expressive, but also lighter weight than high
end host-based solutions. The ability to visualize and audit
the network creates a platform to explore the local context
gathered from all the hosts allowing for validation of pol-
icy as well as determining any sort of interesting anomalies
occurring among user usage. Finally, the ability to identify
problems and tie them to specific application easily are the
key features of our system.

Lockdown serves as a robust addition to an enterprise
network infrastructure. Critically, we note that the goal of
Lockdown is to complement, not replace the security infras-
tructure by plugging into existing work from data mining,
anomaly detection, firewall analysis/management, and pol-
icy mapping.

2. ARCHITECTURE
The Lockdown system architecture is a distributed system

composed of host installable components in addition to a
central repository for the database. Utilizing a distributed
data-collection system of monitors and enforcers installed
on every host the mapping of mechanism to policy is fully
realized via use of the local context. Since the architecture
is distributed, a global policy can be created for all hosts
and then finely tuned for each host as individual needs may
change over time in a closed loop.

2.1 Policy
One of the most critical aspects of any enterprise security

approach is how the enterprise policy is mapped to the net-
work security mechanisms, be they end host or in-network
mechanisms. In the ideal management case, the configurable
aspects of the mechanisms (typically rules) map in an easily
observable manner to the policy, be it one or more rules tied
to a specific policy statement. The diverse array of work in
the area of natural language processing with regards to se-
curity [29, 4] is a testament to the appeal of said aspect. In a
similar vein, the mechanisms must be able to capture reason-
able levels of expressiveness to enable reasonable confidence
that the policy item is indeed addressed by the mechanism.



Hence, the wide array of work on formal security expressive-
ness addresses this need [9, 15, 32].

However, as any administrator or researcher in systems
will attest, the practical limits of systems and resources
make complexity a natural enemy of robustness and secu-
rity. We do not focus on the theoretical foundations of pol-
icy mapping but rather to focus on how local context offers
a compelling economy of expressiveness, i.e. significant im-
provement to the efficacy of managing the network with neg-
ligible increases to complexity. In short, local context adds
the ability to create rules that are cognizant of the normal
UNIX user (akin to a network ACL) and application (name,
path, arguments). In an oversimplified sense, the security
mechanism offered by Lockdown would appear to simply be
an enhanced firewall, i.e. iptables++. In contrast, as we
will show in later sections, the consideration of local context
can dramatically improve not only policy mapping but also
network assessment, mechanism auditing, and debugging,
i.e. streamlining the core management aspects expected of
a system administrator.

2.2 Enforcer
The job of the Enforcer component is to interpose when

a network operation is attempted and either allow the oper-
ation to continue or to deny and shutdown the network at-
tempt based on local context. Since sockets are the method
in which the kernel manages network connectivity, it is a
prime place to enforce on. Also, working at this level in
the operating system allows direct access to the local con-
text information. With the Enforcer working at the system
call level, it is able to solve the problem of acting on local
context, providing interesting feedback to applications that
have their sockets denied, and achieve an environment that
is easily managed since it has a better view of what is actu-
ally occurring with network connectivity. We choose to use
Linux Security Modules to build the Enforcer.

The Linux Security Module framework or LSM, standard
in the 2.6 Linux kernel, but available as a patch for the 2.4
version, has several hooks placed within an assortment of
system calls that allow upcalls to loadable modules imple-
menting the functions [31].To enforce network connectivity
we focus on the socket hooks.We can determine whether cer-
tain sockets should be created before they are, or if an incom-
ing connection on a listening host should even be accepted.
If upon passing through the LSM the firewall or some sort
of Intrusion Prevention/Detection System located down the
line chooses to close the flow this can still be done since the
LSM is an additional security feature and the proper way
to secure a system is through a non-homogenous layered ap-
proach.

Additionally, the notion of being able to more effectively
debug network connectivity issues is greatly enhanced us-
ing the LSM for enforcement. Figure 3 presents two cases.
In the iptables case, all outgoing traffic is blocked as an
java application we wrote to connect to our laboratory’s
web-server is initiated. The java application had a socket
timeout value set to 30 seconds, where the default for java
sockets is no time-out. Since iptables will simply drop pack-
ets and not inform the application of what is happening the
application sat until 30 seconds had passed and then the user
was informed of the SocketTimeoutException. Had there not
been a timeout value set (default for java), the application
would have sat indefinitely with no feedback for the user.

Lockdown: block java WebServer

Iptables: block all outgoing traffic

Instantaneous Feedback

Wait until time-out

~30 seconds

Figure 3: The application view of enforcement com-
paring iptables (above) versus Lockdown (below)

In the Lockdown case, a rule was put in to block the java
WebServer application. As soon as the application was exe-
cuted the IOException was returned informing the user that
the operation was not permitted. By using an LSM based
enforcement approach the user/administrator is able to de-
bug the problem easier than if packets were simply being
dropped with no feedback on what is occurring.

2.3 Monitor
The Monitor is deployed onto each host possible through-

out the network. The purpose of the Monitor is to gather
the local context related to network activity on the host.
Since the only way to accurately know exactly what is oc-
curring on a host is to monitor it by physically being at the
machine, either in software or by some other means, this is
why we deploy our monitor in a distributed fashion among
all the hosts on the network instead of monitoring a central
location. The information gathered from each host allows
for accurate auditing and policy management in a closed
loop, rather than inferring information and/or requiring all
connections to flow through a central entity.

The data collection from April to April 2008, has been
using the shell script Monitor. At the time of writing, the
agent is deployed on Linux, Solaris, and OS X platforms
while a native Windows version is under development. The
Monitor is a root installed BASH shell script that gathers
and sends the local context of the monitored host to the
central repository. The simplicity of the Monitor lies in its
ability to run the commonly found tools netstat, ps, and lsof
on any Linux/Unix/BSD based operating system.

These three tools are used instead of any single one in
order to gather the entire local context which includes: ppid,
pid, uid, gid, foreign ip, foreign port, local ip, local port, full
application path + arguments among other information.

2.4 Visualization & Analyzer
The Visualization and Analysis components are built into

a standalone application that enables a network administra-
tor to easily trace through a period of time’s connections.
The application presents numerous statistics and other use-



Figure 4: Lockdown Viewer, displaying the connections for a specific host.

Figure 5: Lockdown Viewer, displaying a specific
user discovered using a host.

ful information gleaned from data-mining algorithms that
are run. Network connections are visualized via the prefuse
visualization toolkit, as seen in figures 4 and 5, and the
Viewer is able to drill down to different levels of detail sim-
plifying the administrators job of viewing how the network is
used and who is using what when. The search and graphing
of dependencies among the nodes in the graph most closely
resembles the Leslie Graphs as used in [16] except our net-
working graphing provides a robust level of exploration and
analysis on the dependencies among hosts, users, and appli-
cations as opposed to just host to host connections.

Simple, 
problematic

Functional, 
but hard

Simple 
Deployment

Complex
Deployment

Fine
Control

Coarse
Control

iptables,
tcpwrappers

Windows F/W

FreeBSD F/W

ZoneAlarm

Lockdown

HIP,
IPsec,
AAA

User-Level
802.1x Certs

EMERALD,
Bro

SANE

HIDS

Snort /IDS

Ethane

KeyNote

Application Proxy
Deep Packet Inspection,

BSD pf

Figure 6: Contextualizing Lockdown within existing
network security mechanisms

3. RELATED WORK
In a broad sense, the work in this paper touches on the

vast array of research already conducted with regards to fire-
wall/policy analysis [18, 3, 17, 10, 11], intrusion detection
[1, 19, 24, 7], user/host authentication [6, 23], and recent
clean slate design security efforts [13, 12]. Figure 6 attempts
to capture where Lockdown lies on the axes of deployment
complexity (x axis) and granularity of control (y axis). In
some sense, the figure captures the range of solutions rang-



ing from lightweight, simple firewall solutions to pervasive,
heavyweight solutions that encompass the entirety of the en-
terprise. Notably, the figure focuses on standards body and
research works with the primary discussion below regarding
commercial solutions.

At the lower end of deployment complexity, traditional
host-based and in-network solutions are located including
firewalls (iptables & OpenBSD-pf ) and flow monitoring solu-
tions that act in an application-independent manner (Snort,
classic anomaly detection systems, etc.). Notably, these de-
vices suffer from the inability to understand the context of
the connection, acting on Layer 3 / Layer 4 data or broad
patterns of activity (signatures, anomalous traffic patterns,
etc.). However, given that these techniques are often the
initial mechanism for applying policy, significant research
has explored how to validate policy mapping. Hamed and
Al-Shaer [18] noted a taxonomy of conflicts in policy for
network security devices with their previous work applying
graph-based boolean function manipulation to distributed
policy analysis [3]. Guttman [17] constructed a global pol-
icy definition language with algorithms for verification while
Bartal et al in [10] separated policy from topology along with
a more modular architecture with Firmato.

Ioannadis et. al in [21] introduced KeyNote which ad-
dressed the issue of distributed firewall management. While
the kernel enforcement mechanism of KeyNote shares as-
pects of the Lockdown enforcer component, KeyNote oper-
ates largely in the same rule domain as traditional IP fire-
wall rules (IP, port) only with authentication (digital cre-
dentials) enforcing user identity. The recent clean slate ef-
forts of SANE [13] and Ethane [12] move enforcement to
the network switch itself with Ethane operating in a slightly
less heavyweight manner than SANE. Similar to KeyNote,
Ethane and SANE force the users through a centralized con-
troller (digital certificates via IKE in KeyNote) to validate
connectivity with the resulting authentication being a pre-
requisite for proper LAN routing. Critically, the clean slate
architectures of SANE/Ethane represent a sizeable cost in
terms of changing network hardware. Moreover, we note
that none of the noted works address management, focus-
ing exclusively on the how of enforcement rather than how
management of the network might be improved through vi-
sualization or auditing.

Deep packet inspection (DPI), i.e. application-specific
proxying, trades processing speed for the ability to fully eval-
uate the state of the application-layer protocol. A typical de-
ployment of DPI might involve an in-band application-aware
IDS or forcing users to authenticate through an application-
specific proxy (ex. web proxy). While this is marginally
effective for the most basic of applications, DPI must con-
tinually react to application protocol enhancements and ap-
plications exploiting ‘benign’ operations to bypass filtering.
Moreover, DPI offers little benefit when the traffic itself is
encrypted (SSH, SSL, etc.). While work has been conducted
on how to infer applications types despite encryption [20],
the potential for widespread usage of encryption with IPv6
is problematic.

On the commercial side, numerous solutions exist across
the entirety of the deployment complexity spectrum. En-
hanced firewalls provide normal firewall rules with additional
options for consideration of applications and for detecting
changes to the application itself (Windows XP Firewall,
ZoneAlarm). Management software such as Microsoft SMS

(Server Management System) and others allows for manage-
ment of the distributed policies. However as noted earlier,
these tools can make security-based connectivity issues dif-
ficult to detect and offer little in the manner of validation
or visualization of the network itself.

Additional to Microsoft SMS there have been several other
projects from the MS research group in regards to enter-
prise network network management. Strider ,[27], discusses
the development of a system to monitor the persistent-state
interactions on a system in the form of an always-on mon-
itoring agent. The goal of this project was to troubleshoot
system mis-configurations and keep state so that a system
can be rolled back to a working state. Peer Pressure, [28],
uses a statistic model to help diagnose the root-cause of pos-
sible misconfigurations on a system in an automated fash-
ion. However, this system reports a large number of false
positives for systems which are highly customized by the
end-user. The search and graphing of dependencies among
the nodes in the graph on Lockdown most closely resembles
the Leslie Graphs described in [16]. Lockdown, though, pro-
vides a much more robust level of exploration and analysis
on the dependencies among hosts, users, and applications
as opposed to just host to host connections which appear in
[16]. Additionally, Sherlock, [8], presents the use of infer-
ence graphs and data collection to detect faulting nodes in
a network and dependencies among nodes through the use
of an agent loaded onto machines in the network. The Sher-
lock agent is however, a packet level analyzer and does not
achieve the granularity that the Lockdown Monitor does.
While Sherlock can help detect performance problems, the
reasons for the problems are limited to its granularity of
data collection and analysis.

With regards to the high end, we note several prominent
solutions including Cisco Security Agents, Endforce, Con-
sentry, Alterpoint, and Elemental Secrity. In a broad sense,
the solutions can be divided into three different groups. The
first group are based on signature databases whereby appli-
cation network accesses are analyzed by a host agent and
compared to the signature database for possibly exploits
and security warnings. The second group employs signature
analyses to search for common security holes such as buffer
overflows with data logged for future analysis. The third
group of solutions such as Cisco’s NAC employ a mixture of
network-level and host-level control with user authentication
to control network security. While these solutions are quite
powerful, the pervasive commercial solutions are often time
consuming to configure and manage requiring significant IT
investments to employ effectively. Hence, as noted in the
introduction, deployment of such solutions has largely been
limited to a minority of enterprise environments [25].

Finally, we note related work in the area of intrusion de-
tection. Specifically, Lockdown does not attempt to fill the
role of a host-based IDS (HIDS) [24, 26, 22]. Notably, sev-
eral works noted the need for local context [5, 30] for bet-
ter policing but did not focus on how to gather or analyze
the information. Conversely, other IDS works [24, 26, 14]
have described approaches for the aggregation of host-based
IDS information for centralized analysis. In contrast to the
often heavyweight nature of host-based intrusion detection
systems and their respective data gathering, Lockdown fo-
cuses on maximumizing benefit with minimal cost. As a
result, Lockdown trades effectiveness of mechanism for that
decision (impact of compromised host) but offers vastly im-



proved management to the network administrator with min-
imal deployment cost.

4. REFERENCES
[1] Snort: The open source network intrusion detection

system. Available at www.snort.org.

[2] 2006.

[3] E. Al-Shaer and H. Hamed. Discovery of policy
anomalies in distributed firewalls. In IEEE
INFOCOM, pages 2605– 2616, Mar. 2004.

[4] E. S. Al-Shaer and H. H. Hamed. Management and
translation of filtering security policies. In IEEE ICC,
2003.

[5] M. Almgren and U. Lindqvist. Application-integrated
data collection for security monitoring. In RAID ’01:
Proceedings of the 4th International Symposium on
Recent Advances in Intrusion Detection, pages 22–36,
London, UK, 2001. Springer-Verlag.

[6] R. Atkinson. IP Authentication Header. IETF RFC
1826, Aug. 1995.

[7] S. Axelsson. Intrusion detection systems: A survey
and taxonomoy. Technical report, Chalmers
University, 2000.

[8] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A.
Maltz, and M. Zhang. Towards highly reliable
enterprise network services via inference of multi-level
dependencies. In Proceedings of ACM SIGCOMM
2007, 2007.

[9] A. Bandara, A. Kakas, E. Lupu, and A. Russo. Using
argumentation logic for firewall policy specification
and analysis. In IFIP/IEEE International Workshop
on Distributed Systems: Operations and Management
(DSOM), pages 185–196, Oct. 2006.

[10] Y. Bartal, A. Mayer, K. Nissim, and A. Wool.
Firmato: A novel firewall management toolkit. In
IEEE Symposium on Security and Privacy, May 1999.

[11] S. Bellovin. Distributed firewalls. ;login, pages 39–47,
November 1999.

[12] M. Casado, M. Freedman, J. Pettit, J.Luo,
N. McKeown, , and S. Shenker. Ethane: Taking
control of the enterprise. In SIGCOMM, 2007.

[13] M. Casado, T. Garfinkel, A. Akella, M. Freedman,
D. Boneh, N. McKeown, and S. Shenker. Sane: A
protection architecture for enterprise networks. In 15th
USENIX Security Symposium, 2006.

[14] H. Dreger, C. Kreibich, V. Paxson, and R. Sommer.
Enhancing the accuracy of network-based intrusion
detection with host-based context. In Conference on
Detection of Intrusions and Malware and Vulnerability
Assessment (DIMVA), 2005.

[15] A. El-Atawy, T. Samak, Z. Wali, E. Al-Shaer, S. Li,
F. Lin, and C. Pham. An automated framework for
validating firewall policy enforcement. In Proc. of
IEEE Workshop on Policies for Distributed Systems
and Networks (POLICY’07), Bologna, Italy, June
2007.

[16] P. B. et. al. Discovering dependencies for network
management. In Proceedings of workshop on Hot
Topics in Networks, 2006.

[17] J. Guttman. Filtering posture: Local enforcement for
global policies. In IEEE Symposium on Security and
Privacy, May 1997.

[18] H. Hamed and E. Al-Shaer. Taxonomy of conflicts in
network security policies. IEEE Communications
Magazine, pages 134–141, Mar. 2006.

[19] M. Handley, V. Paxson, and C. Kreibich. Network
intrusion detection: Evasion, traffic normalization,
and end-to-end protocol semantics. In Proc. of
USENIX Security Symposium, Aug. 2001.

[20] J. Horton and R. Safavi-Naini. Detecting policy
violations through traffic analysis. In Proceedings of
the 22nd Annual Computer Security Applications
Conference, 2006.

[21] S. Ioannidis, A. D. Keromytis, S. M. Bellovin, and
J. M. Smith. Implementing a distributed firewall. In
ACM Conference on Computer and Communications
Security, pages 190–199, 2000.

[22] R. Kemmerer and G. Vigna. Hi-DRA: Intrusion
Detection for Internet Security. IEEE Proceedings,
93(10):1848–1857, October 2005.

[23] R. Moskowitz and P. Nikander. Host Identity Protocol
(HIP) Architecture. IETF RFC 4423, May 2006.

[24] P. Porras and P. Neumann. EMERALD: Event
monitoring enabling responses to anomalous live
disturbances. In Proc. of the 20th National
Information Security Systems Conference, pages
353–365, Baltimore, Maryland, Oct. 1997.

[25] R. Richardson. 2007 csi computer crime and security
survey. In The 12th Annual Computer Crime and
Security Survey. Computer Security Institute, 2007.

[26] E. H. Spafford and D. Zamboni. Intrusion detection
using autonomous agents. Comput. Networks,
34(4):547–570, 2000.

[27] C. Verbowski, E. K. rad Daniels, A. Kumar, Y.-M.
Wang, R. Roussev, S. Lu, and J. Lee. Flight data
recorder: Always-on tracing and scalable analysis of
persistent state interactions to improve systems and
security management. In In Proceedings of Seventh
Symposium on Operating Systems Design and
Implementation, 2006.

[28] H. J. Wang, J. Platt, Y. Chen, R. Zhang, and Y.-M.
Wang. Automatic misconfiguration troubleshooting
with peerpressure. In in Proc. Sixth Symposium on
Operating Systems Design and Implementation
(OSDI), 2004.

[29] J. Weeds, B. Keller, D. Weir, I. Wakeman, J. Rimmer,
and T. Owen. Natural language expression of user
policies in pervasive computing environments. In Proc.
of OntoLex 2004 (LREC Workshop on Ontologies and
Lexical Resources in Distributed Environments), 2004.

[30] M. G. Welz and A. Hutchison. Interfacing trusted
applications with intrusion detection systems. In
RAID ’01: Proceedings of the 4th International
Symposium on Recent Advances in Intrusion
Detection, pages 37–53, London, UK, 2001.
Springer-Verlag.

[31] C. Wright, C. Cowan, J. Morris, S. Smalley, and
G. Kroah-Hartman. Linux security module framework.
In Ottaw Linux Symposium, 2002.

[32] L. Zhao, A. Shimae, and H. Nagamochi. Linear-tree
rule structure for firewall optimization. In Proceedings
of Communications, Internet, and Information
Technology, 2007.


