
Improving Audio CAPTCHAs  
 

Jennifer Tam, Jiri Simsa, David Huggins-Daines, Luis von Ahn, and Manuel Blum 
Computer Science Department, Carnegie Mellon University 

5000 Forbes Avenue, Pittsburgh, PA 15213 
{jdtam, jsimsa, dhuggins, biglou, mblum}@cs.cmu.edu

 
 

ABSTRACT 
CAPTCHAs are computer generated tests that humans can pass 

but current computer systems cannot.  CAPTCHAs provide a 

method for automatically distinguishing a human from a computer 

program, and therefore can protect web services from bots.  Most 

CAPTCHAs consist of distorted images, usually text, for which a 

user must provide some description.  Unfortunately, visual 

CAPTCHAs limit access to the millions of visually impaired 

people using the web.  Audio CAPTCHAs were created to solve 

this accessibility issue; however, the security of audio 

CAPTCHAs was never formally tested.  We analyze the security 

of current audio CAPTCHAs, and provide a description and 

analysis of a new and improved audio CAPTCHA. 

Categories and Subject Descriptors 
K.4.2 [Social Issues]: Assistive technologies for persons with 

disabilities. 

General Terms 
Online Security, Abuse Prevention. 
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1. INTRODUCTION 
CAPTCHAs [1] are automated tests designed to tell computers 

and humans apart by presenting users with a problem that humans 

can solve but current computer programs cannot.  Because 

CAPTCHAs can distinguish between humans and computers with 

a high probability, they are used for many different applications.  

CAPTCHAs prevent bots from voting continuously in online 

polls, automatically registering for millions of spam email 

accounts, automatically purchasing tickets to buy out an event, 

etc.  Once a CAPTCHA is broken (i.e. computer programs can 

successfully pass the test), bots can impersonate humans and gain 

access to services that they should not, therefore, it is important 

for CAPTCHAs to be secure.   

To pass the typical visual CAPTCHA, a user must correctly retype 

the text found in an image of distorted text.  Because visually 

impaired users cannot see this type of CAPTCHA, audio 

CAPTCHAs were created.  Typical audio CAPTCHAs consist of 

several speakers saying digits spoken at randomly spaced 

intervals.  A user must correctly identify the digits spoken in the 

audio file to pass the CAPTCHA.  To make this test difficult for 

current computer systems, specifically automatic speech 

recognition (ASR) programs, background noise is injected into 

the audio files.  Although the noise makes the CAPTCHAs more 

difficult for computers to pass, it also makes the CAPTCHAs 

more difficult for humans to pass.   

Since no official evaluation of existing audio CAPTCHAs has 

been reported, we tested the security of the audio CAPTCHA used 

by many popular Websites by running experiments designed to 

break it.  Because we were able to break this audio CAPTCHA, 

we are creating a new audio CAPTCHA that is more secure, and 

easier for humans to pass.  Section 3 includes more details 

regarding the design of the new audio CAPTCHA. 

2. Assessment of Current Audio CAPTCHAs 
Since automated programs can attempt to pass a CAPTCHA 

repeatedly, a CAPTCHA is essentially broken when a program 

can pass it more than roughly 5% of the time.  The audio 

CAPTCHAs we tested consisted of digits spoken by random 

people, plus other human voices playing throughout as “noise.”  

While many academic publications have attempted to break visual 

CAPTCHAs, to the best of our knowledge, none have investigated 

the security of audio-based CAPTCHAs. 

To break the audio CAPTCHAs, we derive features from the 

CAPTCHA audio and use several machine learning techniques to 

perform ASR on segments of the CAPTCHA.  There are many 

popular techniques for extracting features from speech.  The three 

techniques we use are mel-frequency cepstral coefficients 

(MFCC), perceptual linear prediction (PLP) and relative spectral 

transform-PLP (RASTA-PLP).  MFCC is one of the most popular 

speech feature representations used.  Similar to a fast Fourier 

transform (FFT), MFCC transforms an audio file into frequency 

bands, but (unlike FFT) MFCC uses mel-frequency bands, which 

are better for approximating the range of frequencies humans 

hear.  PLP was designed to extract speaker-independent features 

from speech [2]. Therefore, by using PLP and a variant such as 

RASTA-PLP, we were able to train our classifiers to recognize 

digits independently of who spoke them.  Since many different 

people recorded the digits used by the audio CAPTCHAs, PLP 

and RASTA-PLP were needed to extract the features that were 

most useful for solving them.  

In [2,3], the authors conducted experiments on recognizing 

isolated digits in the presence of noise using both PLP and 

RASTA-PLP.  However, the noise used consisted of telephone or 

microphone static caused by recording in different locations.  The 

audio CAPTCHAs we used contain this type of noise, as well as 

the added vocal noise, which is supposed to make the automated 

recognition process much harder. 

Our approach to breaking the audio CAPTCHAs began by first 

training our classifiers on features generated from automatically 

segmented and labeled CAPTCHAs.  We gathered 1,000 audio 

CAPTCHAs annotated with information regarding digit locations.  



We randomly selected 900 of those CAPTCHAs to use for 

training, with the remaining 100 used for testing the accuracy of 

our classifiers and our ability to automatically solve CAPTCHAs.  

We ignored the annotated information from the 100 samples we 

used for testing.  Our method for solving CAPTCHAs iteratively 

extracts an audio segment from a CAPTCHA, inputs the segment 

to one of our digit recognizers, and outputs the label for that 

segment.  We continue this process until eight segments are 

labeled as digits or there are no unlabeled segments left.  A 

segment to be classified is identified by taking the neighborhood 

of the highest energy peak of a yet unlabeled part of the 

CAPTCHA.  

Once a prediction of the solution to the CAPTCHA is computed, 

it is compared to the true solution.  Given the acceptance 

conditions of the audio CAPTCHA we analyzed, a prediction is 

considered valid if it meets any of the following criteria:   

1) The prediction matches the true solution 

exactly. 

2) Inserting one digit to the prediction would 

make it match the solution exactly. 

3) Replacing one digit in the prediction would 

make it match the solution exactly. 

4) Removing one digit of the prediction would 

make it match the solution exactly. 

Our method will never produce a guess with nine digits, and 

therefore case 4 is irrelevant to our approach.  Also outputs from 

our experiments show that even though theoretically our method 

could output seven or less digits, in practice it always outputs 

eight.  This renders case 2 irrelevant to our approach as well.  

Nevertheless, case 3 applies quite often and helps us to achieve a 

better CAPTCHA solving accuracy.  The results of our 

experiments (see Table 1) show that our method can solve 58% of 

the challenges.  

3. Current Work: Developing a More Robust 

Audio CAPTCHA 
Upon successfully breaking the current audio CAPTCHA, our 

objective now is to create a new audio CAPTCHA that achieves 

the following goals: (1) it cannot be broken by current ASR 

systems and (2) the human pass rate is at least 70%.  To achieve 

the first goal, we plan to only use audio that has been analyzed by 

an ASR system which has produced poor results.  To improve the 

human pass rate, we plan to take advantage of the human mind’s 

ability to understand distorted audio through context clues.  By 

listening to a phrase instead of to random isolated words, humans 

can decipher distorted utterances because they are familiar with 

the phrase, or they can use contextual clues to decipher the 

distorted audio.  Using this idea, the audio for the new audio 

CAPTCHA will be taken from old-time radio programs in which 

the poor quality of the audio makes it difficult for ASR systems to 

transcribe.  We expect the new audio CAPTCHA will be more 

secure than the current version and easier for humans to pass. 

Table 1. Test accuracies of (a) AdaBoost (b) SVM (c) k-NN. 

The first column includes the passing rate and the percentage 

of exact matches (in parenthesis). The second column includes 

digit recognition accuracy for fixed sized segments generated 

from test samples. 

(a) 

Feature type CAPTCHA Test Digit Test 

MFCC 18% (6%) 74.60% 

PLP SPEC 27% (10%) 82.40% 

PLP CEPS 23% (10%) 77.60% 

RASTA-PLP SPEC 9% (3%) 68.00% 

RASTA-PLP CEPS 9% (3%) 68.00% 

# of objects 100 CAPTCHAs 1008 segments 

 

(b) 

Feature type CAPTCHA Test Digit Test 

MFCC 56% (43%) 94.80% 

PLP SPEC 58% (39%) 96.80% 

PLP CEPS 56% (45%) 95.40% 

RASTA-PLP SPEC 36% (18%) 86.20% 

RASTA-PLP CEPS 46% (30%) 89.90% 

# of objects 100 CAPTCHAs 1008 segments 

 

(c) 

Feature type CAPTCHA Test Digit Test 

MFCC 22% (11%) 81.30% 

PLP SPEC 43% (25%) 93.80% 

PLP CEPS 29% (14%) 79.10% 

RASTA-PLP SPEC 24% (4%) 79.90% 

RASTA-PLP CEPS 32% (12%) 83.30% 

# of objects 100 CAPTCHAs 1008 segments 
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