Towards a Universally Usable CAPTCHA

Graig Sauer, Harry Hochheiser, Jinjuan Feng, and Jonathan Lazar Department of Computer and Information Sciences, Towson University 8000 York Road, Towson, MD 21252 {gsauer1,hhochheiser,jfeng,jlazar}@towson.edu

Introduction

- What is a CAPTCHA?
- Widely used CAPTCHA products
- CAPTCHA categories
 - Character
 - Image
 - Anomaly
 - Recognition
 - Sound

CAPTCHA Accessibility Concerns

- Typical security and privacy tools rely on visual cues that are not accessible for visually impaired users
- To deal with this problem developers have started to add audio substitutes to their products

Accessibility/Usability Study

- Audio CAPTCHA
 - Recaptcha
- Potential concerns we wished to analyze
 - User Comprehension
 - Cognitive Load
 - Interference with screen readers
 - Frustrations created by the CAPTCHA

Study Design

- Recaptcha
 - Audio

Participant computer

- Jaws
- External Aids Used
 - Braille Note Taker
 - MS Word
- Test
 - Six attempts (one practice)
 - Short Demographics survey

Participant	Years of Computer Use	Hours of Computer Use Per Day	Jaws Experience on a scale of 1-10 (1 Being the
			lowest
1	18	4	7
2	4	6-8	7
3	15	7-8	8
4	10	7	9
5	20	10	1
6	20	8	10

- Average years of computer use: 14.5 years
- Average hours of computer use daily: 7.25 hours
- Average Jaws experience: 7 on a scale of 1-10

• Average: 2.33

Average: 65.64 seconds

Average: 59.56 seconds

Results cont.

- Average Correctness Rate
 - **46%**
 - Acceptable rate is 90% correct (Chellapilla et al.)
- Average times
 - Failed attempts: 59.56
 - Correct attempts: 65.64
 - Suggested CAPTCHA completion time
 - 51 seconds (Schluessler et al.)
- Participants that used some sort of external aid (Braille note -taker or MS Word) were much more successful then those that did not use these aids.

Discussion

- Use of external aids
 - Accessibility vs. Usability
- Success rate
 - 46% correct completion rate vs. Acceptable 90%
- Time to complete
 - Average time 14.46 seconds longer
- Participant complaints
 - Audio Clarity
 - Guessing answers

Towards an Accessible CAPTCHA

- Universal Usability
 - products and services that are usable for every citizen
 - Separation between systems
- Human-Interaction Proof, Universally Usable (HIPUU)
 - Visual and Audio HIP
 - Challenges
 - Search Space
 - File recognition (checksums, signatures)
 - Input type
 - Expanded Prototype
 - Sound merging
 - Drop down list
 - Free Text Input
 - Universal Usability
 - Both visual and audio systems deployed concurrently

Conclusions/Future Research

- Further development of the HIPUU prototype
 - Expansion of Search Space
 - Free Text vs. Drop Down List
 - In-audible white noise
- User testing
 - Usability study of expanded HIPUU
 - Free text study
 - Online user study

ACKNOWLEDGMENTS

 Our thanks to The National Federation Of the Blind for assisting us with recruiting participants

- [1] Travis Schluessler, Stephen Goglin, and Erik Johnson. Is a Bot at Control? Detecting Input Data Attacks. *Proceedings of the 6th ACM SIGCOMM workshop on Network and system support for games*, 2007.
- [2] Kumar Chellapilla, Kevin Larson, Patrice Simard, and Mary Czerwinski. Designing Human Friendly Human Interaction Proofs (HIPS). Proceedings of the SIGCHI conference on Human factors in computing systems, 2005.
- [3] Louis Von Ahn, Manual Blum and John Langford. Telling Humans and Computers Apart Automatically. *Comm. Of the ACM*, 47(2):57-60, 2004.
- [4] Jonathan Holman, Jonathan Lazar, Jinjuan Feng, and John D'Arcy. Developing Usable CAPTCHAs for Blind Users. *Proceedings of the 9th international ACM SIGACCESS conference on Computers and accessibility*, 2007.
- [5] Jeremy Elson, John Douceur, and Jared Saul. Asirra: A CAPTCHA that exploits Interest-Aligned Manual Image Categorization. Proceedings of the 14th ACM conference on Computer and communications security, 2007.
- [6] Ritendra Datta, Jia Li, and James Wang. IMAGINATION: A Robust Image-based CAPTCHA Generation System. *Proceedings* of the 13th annual ACM international conference on Multimedia, 2005
- [7] Greg Mori and Jitendra Malik. Recognizing Objects in Adversarial Clutter: Breaking a Visual CAPTCHA. In *Computer Vission and Pattern Recognition*, 2003.
- [8] Andy Schlaikjer, A Dual-Use Speech CAPTCHA: Aiding Visually Impaired Web Users While Providing Transcriptions and Audio Streams. CMU-LTI-07-014. http://www.lti.cs.cmu.edu/
- [9] ReCAPTCHA:Stop Spam Read Books (2007), Retrieved on May 7, 2008 at http://recaptcha.net/