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ABSTRACT

We develop a model to identify the most likely regions for
users to click in order to create graphical passwords in the
PassPoints system. A PassPoints password is a sequence of
points, chosen by a user in an image that is displayed on
the screen. Our model predicts probabilities of likely click
points; this enables us to predict the entropy of a click point
in a graphical password for a given image. The model al-
lows us to evaluate automatically whether a given image is
well suited for the PassPoints system, and to analyze possi-
ble dictionary attacks against the system. We compare the
predictions provided by our model to results of experiments
involving human users. At this stage, our model and the
experiments are small and limited; but they show that user
choice can be modeled and that expansions of the model and
the experiments are a promising direction of research.

Categories and Subject Descriptors
H.5.2 [Interfaces and Representation]: User Interfaces—
Graphical user interfaces ; K.6.5 [Computing Milieux]:
Security and Protection—Authentication

Keywords
Graphical passwords, password entropy, user behavior, dic-
tionary attack

1. INTRODUCTION
The most common user authentication scheme in com-

puter systems today is the alphanumeric password. Al-
though alphanumeric passwords are used widely, they have
certain well known drawbacks such as low memorability of
high entropy passwords. These drawbacks are not due to the
authentication system itself but arize from the interaction
between the users and the system. Since users usually can-
not remember high entropy passwords they tend to select
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short or simple passwords, that can be broken by dictionary
attacks [17, 1]. Policies and mechanisms that force users to
select high entropy passwords usually result in other unsafe
practices, such as the passwords being written down and
kept in the open.

In order to improve the security of user authentication, al-
ternatives to alphanumeric passwords have been proposed,
e.g., token based authentication, biometrics, graphical pass-
words, or “multiple factors” based on the simultaneous use
of two or more authentication mechanisms. This paper fo-
cuses on graphical password systems, as a “single factor”
authentication.

The main motivation for graphical passwords is the hy-
pothesis that people are better at remembering images than
artificial words. Visual objects seem to offer a much larger
set of usable passwords. For example we can recognize the
people we know from thousands of faces; this fact was used
to implement an authentication system [19]. As another ex-
ample, a user could choose a sequence of points in an image
as a password; this leads to a vast number of possibilities,
if the image is large and complex, and if it has good resolu-
tion. This is the basis for the graphical passwords in [4, 3,
27]. An excellent survey of the numerous graphical password
schemes that have been developed is [23].

Following [27] we classify password systems as

1. Recognition based systems [5, 10, 2, 9, 19, 26],

2. Pure recall based systems [14, 15, 24],

3. Cued recall based systems [4, 22, 3, 27, 13].

In recognition based systems, a user chooses images or
icons or symbols from a large collection; to be authenticated,
the users need to recognize their previous choice among a
large set of candidates. Dhamija, et al. [10] presented a
scheme based on recognition of computer generated images.
Akula and Devisetty [2] provide a variation of this method.
The commercial scheme Passfaces [19] uses images of human
faces. Davis, et al. [9] studied such systems and found that
user password selection is biased by race and gender. Wein-
shall and Kirkpatrick [26] worked on a similar recognition
based scheme in which users were asked to recognize a set of
images (100-200) from a database of 20,000 images. Their
studies showed that even after one or two months, users
could still recognize their graphical passwords with 90% ac-
curacy. This study supports the hypothesis that people re-
member pictures/images better than alphanumeric strings.



Recognition based graphical passwords seem to be easy to
remember, but they have a drawback: On order to provide a
sufficiently large password space they require many rounds
of image recognition for authentication, which is tedious.

In pure recall based graphical password schemes, users
need to reproduce their password without being given any
hints or cues. Alphanumeric passwords, as well as manu-
script signatures, are examples of means of authentication
based on pure recall. Jeremyn et al. [14] described a graph-
ical password scheme “Draw a Secret” (DAS), where users
draw a shape on a grid. Users need to draw approximately
the same shape in order to authenticate themselves. Wei-Chi
Ku et al. [15] study a variation of DAS. Recent research by
Thorpe and van Oorschot [24] describes possible dictionary
attacks against DAS. Overall, graphical password schemes
based on pure recall are quick and convenient to use, but
they seem to have the same disadvantage as alphanumeric
password: They are hard to remember with sufficient preci-
sion when they have enough entropy to be secure.

The concept of cued recall was introduced in [27]. As the
name indicates, users have to recall a password, but the
system offers a framework of hints, context, and cues, that
help the users reproduce their password or help them make
the reproduction more accurate. In the field of computer
systems the earliest example of a graphical password scheme
based on cued recall was Blonder’s patent [4]. Here, the user
is shown an image on the screen, and the password consists
of a few points that the user chooses in the image (by clicking
or pointing). The underlying images in the system help users
recall their graphical password click points, but they have no
direct role in the password. Authentication is performed by
clicking near the previously determined points. In Blonder’s
scheme the image is partitioned into regions, whose outlines
are visible; this results in comics-like images. The user has
to click within the correct regions to log in. An extension
of Blonder’s idea was presented in [3]. This system allows
natural images, without visible regions; instead, there are
several underlying discretization grids (invisible to the user).
Cued recall is intermediate between recognition and pure
recall.

Since graphical passwords are relatively new, their secu-
rity has not been investigated as much as that of alphanu-
meric passwords. We mentioned already the human ten-
dency to choose weak passwords, which enable dictionary
attacks. Is the same true for graphical passwords? It has
been said that graphical passwords can resist dictionary at-
tacks due to a very large actually used key space. However,
the evidence for this so far is mostly anecdotal. For graphi-
cal passwords in the DAS system, mentioned above, it was
shown in [24] that users often choose simple and somewhat
predictable passwords [24]. On the other hand, as we men-
tioned already, DAS is a pure recall system, which gives it
some similarity to alphanumeric passwords. (Note added in
proofs: The editors of the conference drew our attention to
[31] which became available only after our submission; that
paper devises other dictionary attacks on the PassPoints
system.)

This paper addresses the question how one can model the
way a user chooses a click point in a Blonder type graphical
system. We will focus on the PassPoints system of [3, 27],
which uses natural images. We also show how a dictionary
attack can be based on such a model, which also leads to
suggestions about how the password system could be made

more resist against such an attack. A password is a sequence
of click points, but in this paper we only model the choice
of one click point. The question of how a sequence of click
points might be chosen, and the possible correlations be-
tween click points in a same password will be investigated
in a later paper. The rest of this paper is organized as fol-
lows: In Section 2 we review the PassPoints graphical pass-
word system. In Section 3 we develop a model that predicts
user choice of one click point in a PassPoints password, and
we predict the entropy of one click point. In section 4 we
give experimental results that validate our model and pre-
diction techniques. In section 5 we investigate how we can
exploit the user choice model to launch a dictionary attack
on PassPoints, and to strengthen the system. Section 6 has
a conclusion and mentions future work.

2. PASSPOINTS, A GRAPHICAL PASSWORD
SCHEME

In the PassPoints graphical password scheme a password
consists of a sequence of click points (say 5 to 8) that the
user chooses in an image. The image is displayed on the
screen by the system. The image is not secret and has no
role other than helping the user remember the click points.
Any pixel in the image is a candidate for a click point.

(a) PassPoints clicks

Figure 1: A screen shot of the PassPoints system

To log in, the user has to click again closely to the chosen
points, in the chosen sequence. Since it is almost impossi-
ble for human users to click repeatedly on exactly the same
point, the system allows for an error tolerance r in the click
locations (e.g., a disk with radius r = 10 or 15 pixels). This
is done by quantizing (discretizing) the click locations, us-
ing three different square grids, as described in [3]. Each
grid has width 6r between grid lines (horizontal or vertical).
Each one of the three grids is staggered with respect to the
previous grid by a distance 2r vertically and a distance 2r
horizontally; see Fig. 1 (b). If there were only one quan-
tization grid then a selected click point could be close to
a grid line and small variations in the user’s clicking could
lead to a click in a different grid square, thus leading to the
wrong password. On the other hand, one can prove (see [3])



that with the three staggered grids every point in a two-
dimensional image is at distance at least r from the grid
lines of at least one of the three grids; we say that the point
is “safe” in that grid.
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Figure 1 (b): Three staggered grids, G0, G1, and G2.
The point P is safe in G0; Q is safe in G1 and in G2.

The simultaneous use of multiple grids makes the click
points “robust” against the inevitable small uncertainties
in the clicking; hence, this form of discretization is called
“robust discretization”, or “robust quantization”. Click po-
sitions are mapped into grid squares. A sequence of click
points is represented by a sequence of grids together with
a sequence of grid squares. For secure storage of passwords
by the system, a cryptographic hash function is applied to
the sequence of grid squares.

An important feature of the PassPoints system is that
the underlying images for a password are not restricted to
simple comics-like drawings. Complex real-world images can
be used; users can even install their own images. Natural
images help users remember complex passwords better. This
suggests that in a human context, the (conditional) entropy
of a password will depend on the underlying image, and leads
to the question: Given an image, how can we predict the
(conditional) entropy of a click point in that image, within
the context of PassPoint passwords? We want to develop a
model that provides probabilities with which a user clicks
on (or near) any point in an image.

3. MODELING USER CHOICE IN PASS-
POINTS

Studies on visual attention and eye movements show that
most images contain a few portions that most humans focus
on [12, 21]. When asked to create a graphical password a
user would probably not click with the same frequency on
all available pixels, but focus on some specific areas. This is
illustrated in Fig. 2 (a), which shows an image along with
click points that were actually selected by users; a large
amount of clustering of click points is evident.

In the PassPoints scheme the clustering of the users’ click
points reduces the entropy of these click points. In Section 4

(a) Actual clicks

(b) Predicted clicks

Figure 2: Actual clicks vs. predicted clicks

we will describe experiments that enable us to determine an
observed entropy of user click points. However, our goal goes
beyond observing entropy: We want a model that enables
us to predict the entropy of user click points. Such a model
would enable us to design automatic dictionary attacks, or
to rule out certain images a priori (if they lead to low en-
tropy). In this section we develop a model of user choice of
a click point in the PassPoints system and give an algorithm
that predicts the most likely click locations, along with their
probability values. Such a model helps in evaluating the se-
curity of the PassPoints system a priori (i.e., before any
observational user studies), and provides a method for se-
lecting appropriate images that result in higher entropy of
the users’ click points.

Overview of the a priori entropy prediction:
1. In order to predict the possible click positions, a color-
based mean-shift segmentation algorithm [6, 7] is applied
to the image. This algorithm partitions a digital image into
regions, called segments, according to a given criterion in or-
der to locate objects of interest. Among the many possible



segmentation algorithms we want to choose one that detects
natural boundaries of visually attractive regions in an im-
age. The mean-shift segmentation was explicitly designed to
meet this requirement. It produces an image partition that
eliminates redundant information and highlights the impor-
tant regions.
2. After segmentation, the centroid (barycenter) of each
segmented region is calculated. All these centroids will be
weighted according to their attractiveness to humans. The
centroids are mapped to the grid squares of the robust quan-
tization that was described in the previous section; the prob-
ability values of all the centroids that are mapped into the
same grid square are summed, and the result is taken to be
the attention probability of that square. This defines the fo-
cus of attention map which, for each of the three grids and
each grid square, gives the probability that this grid square
will be clicked in.
3. The entropy of a click point in a given image is calculated
by using the attention probabilities of the grid squares. Fig.
3 summarizes the above steps in the form of a block diagram.

Figure 3: Block diagram of click point entropy pre-
diction

3.1 The probability of click points
Users often select the centers of the objects in an image as

password click points. This observation is supported by Fig.
2. In order to predict some of the points that users are likely
to select, we first segment the image as mentioned above,
using mean-shift segmentation; this preserves the shape and
color information of objects in the image and determines
important regions and details in the image.

The mean-shift segmentation algorithm uses a five dimen-

sional space (3 dimensions for color and 2 dimensions for
cartesian coordinates). Color information is represented in
the “L*u*v color space” (see [25]). After segmentation, we
compute the centroid of each segment. However, this results
in a very large set of predicted points, so this set is reduced
a smaller set by ignoring the relatively large and and the rel-
atively small segments, which is justified by some studies,
e.g., [18].

Given an image, the prediction of a set of click points is
not enough to evaluate the security of the graphical pass-
word. We also need to predict the probabilities of the pre-
dicted click points. For example, it can be seen in Fig. 2 (a)
that the click point distribution is not uniform; some regions
in the image are more likely to attract user attention than
others. In order to model this behavior, a focus of attention
map is computed, as explained in more detail in the next
subsection.

3.2 Focus of attention map
Some studies have shown that the user attention is influ-

enced by both “high-level” and “low-level” factors. High-
level factors involve image content and memory feedback
[18], but these factors are too complicated to be included
in a first model. Low-level factors are basic geometric and
physical image features, such as contrast, size, shape, color,
motion, location, foreground, object category, etc. [18, 30].

One of the most important factors which attracts user at-
tention is contrast [29, 11]. The size of the object region
is another factor which attracts the attention of a user to
a particular object. Some particular colors (e.g., red) also
attract our attention, especially if there is a high contrast
between the region’s color and the background color. Fi-
nally, many studies have shown that users generally focus
on people in a scene, and in particular on the eyes, mouth
and hands [20, 21, 29]. In order to compute the focus of
attention map for an image, all the above factors should be
considered. In our case, to demonstrate the validity of our
modeling approach, we selected some of the above factors
and combined them in a fixed way (as opposed to adapt-
ing the factors and their combination to the image). The
factors used in our study to compute the focus of attention
map are luminosity contrast, color contrast, and foreground
of segments.

3.2.1 Luminosity contrast

Contrast is the difference in visual properties that makes
an object distinguishable from other objects and the back-
ground. The luminosity contrast of a segment is calculated
by taking the intensity value (i.e., the gray level) of a seg-
ment and comparing it with neighboring segments. The
luminosity contrast of a segment Ri is calculated as follows:

LumContr(Ri) = 1
Ni
·PNi

k=1 |gray(Ri)− gray(Ri,k)|
where gray(Ri) is the gray level of the segment Ri, Ni is the
number of neighbors of Ri, and Ri,k (k = 1, . . . , Ni) are the
segments that are adjacent to Ri.

3.2.2 Color contrast

In addition to contrast in luminosity, contrast in hue be-
tween a segment and its surrounding is a good measure of
saliency. It is computed in the HSV domain (Hue Saturation
Value) [16]. Hue defines the color value (such as blue, yel-
low, green) of an area, saturation measures the colorfulness



of the area in proportion to its brightness. The “value” is
related to the color luminance or color intensity. Color con-
trast is computed in the same way as luminosity contrast,
but hue values are used instead of gray levels. Before trans-
forming RGB (Red Green Blue) into the HSV domain, RGB
values are normalized to remove the brightness of the color.
Then, normalized RGB values are transformed into the HSV
domain, and the hue contrast is computed as follows (where
Ri, Ni, Ri,k are as in the previous formula):

Color(Ri) = 1
Ni
·PNi

k=1 |hue(Ri)− hue(Ri,k)|

3.2.3 Foreground

This feature distinguishes foreground objects from back-
ground objects. We use the observation that background
objects typically occupy very large segments, compared to
foreground objects. Therefore we use the length of the bor-
ders of segments to label them as background or foreground.
Next, we eliminate very large regions which are likely to be-
long to the background of the image and have lower prob-
ability of selection. The foreground feature is calculated as
follows:

Foregr(Ri) = 1 − min
n

1,
border(Ri)

1.3

totalborder

o
where totalborder is the total number of border pixels (for all
the segments) in the image, and border(Ri) is the number of
border pixels of segment Ri. When border(Ri) is very large
then the value of the foreground feature for Ri is close to
zero. The exponent 1.3 in the equation is obtained empiri-
cally [18].

3.2.4 Combining the saliency features

The three saliency features above are combined into a final
Focus of Attention (FoA) map for the image which takes
a value between 0 and 1; We multiply each feature by a
weight Wk (k = 1, 2, 3):

FoA(Ri) =
W1 · LumContr(Ri) + W2 · Color(Ri) + W3 · Foregr(Ri).

These weights are fixed and obtained empirically in our
study but they can also be computed adaptively according
to the content of the image. Contrast is the most important
factor for determining the most salient regions and it is given
higher weight than color and foreground.

Once the FoA map has been computed, it is compared
to a threshold which is determined empirically. Attention
values under that threshold are set to zero in order to create
a better FoA map. Our assumption here is that saliency
values under a certain threshold are equally likely and do
not attract user attention.

For each one of the three grids, the FoA values of the
points that get quantized to the same grid square are summed,
which yields an FoA value for each grid square in the grid.
The FoA values of the grid squares are turned into proba-
bilities by dividing each FoA value by the sum of all FoA
values. These probabilities are then used to predict the en-
tropy H(I) per click point in an image I:

H(I) = − PN
k=1 pi · log2 pi

where N is the number of grid squares, pi is the predicted
probability of grid square i.

Remark: In this paper we only study the probability
and entropy of a single click point. If the click points of
a password with k click points were independent then the
total entropy of the graphical password would be k · H(I).

(a) Original image

(b) Focus of attention map

Figure 4: FoA map

However, it is not reasonable to assume independence. So, k·
H(I) is an upper bound on the total entropy of the graphical
password. Obviously, dependence between click points only
makes dictionary attacks easier.

The FoA map and the entropy that we computed in this
Section could be called a priori FoA map and a priori en-
tropy, as opposed to the observed FoA map and entropy that
will be obtained in the next Section.

4. EXPERIMENTAL RESULTS
In order to collect real graphical password data, a Java

based authentication system was developed and tested. Over
a hundred users participated in the project. The partic-
ipants were mostly graduate and undergraduate students
who were asked to create a graphical password on one of
two different images. Although in PassPoints users could be
allowed to import their own images, we used two fixed test
images1 in our experiment in order to compare them. The
first one, the Birds Image (Fig. 5), is simple and presumably
not very good for the PassPoints system, as it contains only
relatively few salient points. The second image, which we

1The images were taken from www.freefoto.com



call the People Image, is more complex and appears to have
a larger entropy (Fig. 6).

Every user was presented one of the two images and asked
to select a password, consisting of 5 clicks, that is not easy to
guess, but that they should be able to remember. In order to
ensure that the users entered realistic passwords they were
asked to re-enter the password. Only correctly re-entered
passwords were used in this experiment.

We also used our model (as described in Section 3.1) to
predict as many points as were obtained in the experiment.
The two images along with the observed and the predicted
points are shown in Figures 5 and 6.

In the Birds Image (Fig. 5 (a)) one observes that the par-
ticipants generally clicked on the most salient regions in the
image such as the flying birds. Our model predicted these re-
gions successfully. User click positions were predicted with
80% accuracy. The true positive (true prediction rate of
password points) and true negative (true prediction rate of
non-password points) of our model were 0.79 and 0.80; see
Table 2.

Table 1: Parameters of the experiment
Image name BIRDS PEOPLE
Image size (in pixels) 400 × 600 400 × 600
Click tolerance r 10 pixels 10 pixels
Number of user passwords 92 142
Number of grid squares 264 264

The People Image contained many more features than the
Birds Image, so it is not surprising that the distribution of
user click points is less clustered (Fig. 6 (a)). Also it is seen
from Fig. 6 (a) that the participants did not click much on
places that are hard to recall such as leaves and the flat
background. These regions have low probability and were
successfully detected by our model (see Fig. 6 (b)). For the
people image, the model’s prediction accuracy of user click
points was 71%. The true positive and true negative values
are given in Table 2.

In order to test the performance of our prediction model
of the probability distributions of click point positions, we
applied the Kolmogorov-Smirnov (KS) goodness-of-fit hy-
pothesis test. The predicted and actual click point posi-
tions are considered as two independent random variables
with the same distribution. The Kolmogorov-Smirnov test
measures the maximum difference between the cumulative
distributions of two independent random variables. If the
KS value is close to zero we can say that these two random
variables have similar probability distributions. In others
words the null hypothesis at significance level alpha (0.05 in
our case) is not rejected if alpha is lower than the asymp-
totic P-value (the smallest level at which the null hypothesis
can be rejected). For the Birds Image, our prediction model
worked well and the KS test confirmed that our prediction
of the click points distribution is valid (alfa is lower than
the P-value). However, the KS test produced a higher KS
value for the more complex People Image. This means that
our probability prediction result was only fair for complex
images and requires further improvement (Table 2). As can
be seen from our results, the prediction of the most popu-
lar points in the People Image is not as successful as in the
Birds Image.

(a) Actual click points

(b) Predicted click points

Figure 5: Predicted vs. actual click points

From the actual user click points we obtain an observed
FoA map which gives a clicking probability to every grid
square; this probability is measured by the number of clicks
in the grid square, divided by the total number of clicks
made in the image. The observed FoA map is then used to
obtain the observed entropy of a click point in an image.

Applying this to our two images we found that the ob-
served entropy was 5.2 bits per click point for the Bird
Image and 6.5 bits per click point for the People Image.
This shows that the People Image is better as an underlying
image in the PassPoints graphical password system.

By using our entropy prediction we get a similar conclu-
sion. Our entropy prediction results, given in Table 2, are
that the predicted click point entropy for bird image is 5.3
bits and 7.2 bits per click point for the more complex Peo-
ple Image.

We should note that the observed entropies are also only
estimates, since we used relatively few data points: Our
images have 264 grid squares (per grid), but only 79 grid
squares in the Bird Image, and only 125 squares in the Peo-



Table 2: Click point entropy prediction results
IMAGE NAME BIRDS PEOPLE
True positive 34/43 = 0.79 132/194 = 0.68
True negative 176/221 = 0.80 55/70 = 0.79
Kolmogorov-Smirnov statistics 0.0592 0.1030
(significance level = 0.05) (good est.) (fair est.)
Entropy of a click point 5.2 bits 6.5 bits
Estimated click point entropy 5.3 bits 7.2 bits
Max entropy for a point 8.0 bits 8.0 bits

ple Image had one or more data points. We would need to
perform experiments with at least a few thousand users to
get more reliable estimates for the observed entropy.

Nevertheless, these small experiments and our simple model
demonstrate that user choice can indeed be modeled. In the
next section we show how this can be used to strengthen
the security of the PassPoints passwords against dictionary
attacks.

5. DICTIONARY ATTACK
As an application of our click position prediction model we

show how it provides a starting point for designing an auto-
mated dictionary attack against PassPoints. For a graphical
password consisting of 5 clicks on an image with pixel size
640 × 480 and an error tolerance of r = 10 pixels, there
are 264 squares in a grid; hence, the theoretical maximal
number of passwords is 2645 ≈ 1.28 × 1012. This is not
a large password space, and a simple exhaustive search is
somewhat feasible. So, the purpose of our experiments is
to illustrate a dictionary attack method, not to provide a
realistic dictionary attack against a realistic system.

For an automated dictionary attack we first apply our
PassPoints prediction algorithm to detect the positions in
the image that a priori the most likely for the users. Next
we sort the grid squares according to their predicted prob-
abilities for each of the three grid systems. We ignore grid
squares with probabilities close to zero. We will also con-
sider a dictionary attack in the case where the grid numbers
are not known to the attacker.

For the Bird Image, our attack results are given in Fig. 7
(a). The dotted line (Attack 1) refers to the scenario where
we have access to the hash value of user password and to
the grid numbers. The smooth line (Attack 2) refers to the
scenario where the attacker does not know the sequence of
grid numbers. The results show that knowledge about the
sequence of grid numbers improves the dictionary attack.
According to the figure, if we know the users’ grid numbers
we can discover 61% of 92 user passwords by searching a
very small password space of size 315.

A dictionary attack against the more complex People Im-
age turned out to be less effective. The predicted entropy
per user click point is 7.2 bits for the People Image. This
means that the expected number of different locations (per
click point) in the People Image is greater than 100. This is
high enough to make a dictionary attack difficult, provided
that the number of click points is large (e.g., greater than
7). The attack results with 5 click points are given in Fig.
7 (b). According to the figure, even after searching the 805

5-point passwords made from the 80 most points, we could
crack only 12 user passwords out of the 142 that we had in

our data set. Only after 315 (≈ 2.8 ·106) iterations could we
crack the first user password. This does not prove that the
People Image with 5 click points is safe, but illustrates the
influence of the choice of the image.

We can also design a dictionary attack based on the ob-
served FoA map, instead of the FoA map that is predicted
by our model. Intuitively we would expect that such an
attack to be more successful than an attack based on an
a-priori map, since the observed entropies are lower than
the predicted ones. An experimental verification of this hy-
pothesis would be interesting. A drawback of attacks based
on observed FoA maps is that it does not seem possible to
automate such attacks. Since an important purpose of the
a-priori FoA map is to rule out images that are bad for Pass-
Points, automation is very useful.

6. CONCLUSION AND FUTURE WORK
In this paper, we investigated the security of the Pass-

Points graphical password scheme and the suitability of the
underlying images, by providing a model that predicts the
users’ click points and their saliency value. From this we
predicted the entropy of a click point in a graphical pass-
word.

We tested our model experimentally on two images. We
analyzed the password security of those underlying images
by computing the entropy of a click point, and we compared
the predictions produced by our model with data consist-
ing of roughly 100 actual passwords selected by users. In
these (very small) images our model was able to predict 70-
80% of the user click positions (Table 2). The results show
that our model can be used to evaluate the suitability of an
underlying image for the PassPoints system.

Our model could be improved by extending the FoA map
so that, in addition to centroids of regions, it includes mid
and end points of edges in the image, as well as corner points
or tips of pointy regions. Moreover, in image segmentation,
texture information may be included to get better results
in natural images. A more difficult, but very important
improvement of the model would be to include “high-level”
factors of attraction (i.e., based on image “content”). In this
paper we only considered individual click points. In order to
predict entire passwords we must consider the correlations
between click points in a graphical password. Finally, for
a better experimental test of our model we would need to
collect thousands of graphical password data for different
types of images.

Even at this point we can say that when users create
graphical passwords they should be aware that the most
salient regions can be predicted automatically with a signif-
icant probability.



(a) Actual click points

(b) Predicted click points

Figure 6: Predicted vs. actual click points
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