07- Intro to security, etc.

Lorrie Cranor and Blase Ur

February 4, 2014

05-436 / 05-836 / 08-534 / 08-734 Usable Privacy and Security **Carnegie** Mellon University CyLab

institute for SOFTWARE RESEARCH

Engineering & Public Policy

Today!

- Statistics: Non-independent data
- Discussion of course projects
- Intro to security
- IRB application procedure

Stats with non-independent data

Independence

- Why might your data in UPS experiments not be independent?
 - Non-independent sample (bad!)
 - The inherent design of the experiment (ok!)
- If you have two data points of ponies' race completion times (before and after some treatment), can you actually do a single test that assumes independence to compare conditions?

Non-independence

- Repeated measures (multiple measurements of the same thing)
 - e.g., before and after measurements of a pony's time to finish a race
- Paired t-test (two samples per participant, two groups)
- Repeated measures ANOVA (more general)

Non-independence

- For regressions, use a mixed model
 - "Random effects" based on hierarchy/group
- Case 1: Many measurements of each pony
- Case 2: The ponies have some other relationship. e.g., there are 100 ponies each trained by one of 5 trainers. The identity of the trainer might impact a whole class of ponies' performance.

Discussion of projects

Intro to security

Computer security

- Key properties include:
 - Confidentiality (information isn't disclosed)
 - Integrity (information isn't changed)
 - Availability (information can be accessed)
- Other properties might be desirable:

 Access control, Anonymity, Auditability, Authenticity, Privacy, Secrecy,...

What could go wrong?

- Attackers exploit bugs
 - Software/hardware bugs
 - Humans (social engineering)
 - Unintended characteristics (e.g., side channels, poor sources of randomness)

The Morris Worm

- Released in 1988, its stated purpose was to measure the size of the Internet
- Exploited three bugs:
 - An issue with debug in sendmail
 - Buffer overrun in fingerd
 - Remote logins using .rhost files
- Author was the first indicted under the Computer Fraud and Abuse Act of 1986
 – Where is he now?

Modeling our system

- What are our assets, and what is their cost?
 What is the cost of an outage?
- What is the overall architecture?
- How does the system communicate?
- What humans are involved?
- How valuable is this system to attackers?
 How valuable is it to us?
- What are we worried about?

Modeling the attacker

• What type of action will they take?

Passive (look, but don't touch)

- Active (look and inject messages)
- How sophisticated are they?
- How much do they care?

- How much time will they spend?

- How much do they already know?
 - External / internal attacker?

Group exercise in attacker modeling

- Think about the security of a home
- Come up with at least two attacker models that lead to totally different ways of architecting security for the home
 - Be able to explain your attacker model
 - What is the threat you're worried about?
 - What is your defense?

Defending against attackers

- Legal or policy threats, but no "security"
- Strong "walls"
 - Cryptography, firewalls, etc.
- Redundancy
 - Multiple backup systems
- Detection
 - Intrusion detection systems
- Offense / counterattack

Allocating your resources

- It is impossible to stop everything
 - Time
 - Cost
 - People
 - You probably have better things to do
- What are the most likely threats?
- What are the possible consequences?
- What are relatively simple defenses?

Institutional Review Board (IRB)

IRB process

- Is it research? Are there human subjects?
- Full review vs. expedited vs. exempt
- Fill out and submit protocol
 - Include all study materials (e.g., surveys)
 - Include recruitment text and/or poster
 - Leave plenty of time