Privacy engineering, privacy by design, privacy impact assessments, and privacy governance

Lorrie Faith Cranor

November 11, 2014

8-533 / 8-733 / 19-608 / 95-818: Privacy Policy, Law, and Technology Carnegie Mellon University CyLab

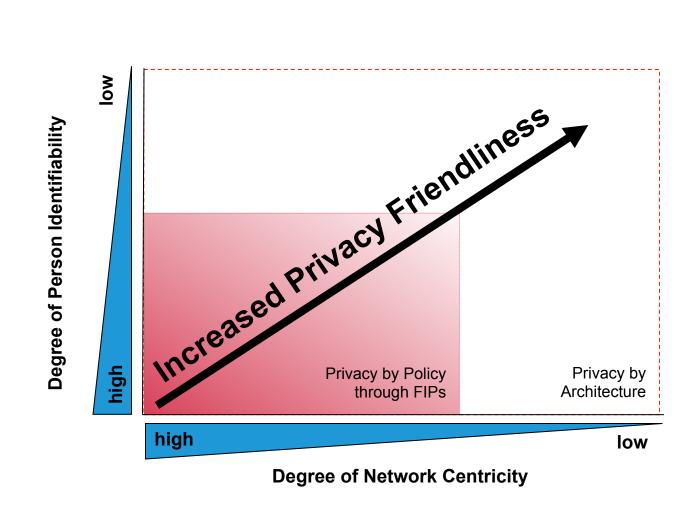
Engineering & Public Policy

Today's agenda

- Quiz
- Questions/comments about the readings
- Discussion about the midterm
- Privacy engineering
- Privacy by design
- Privacy impact assessments
- Privacy governance

By the end of class you will be able to:

 Understand how to apply various approaches to privacy engineering and privacy by design to design problems


Privacy by policy vs. architecture

- What techniques are used in each approach?
- What are the advantages and disadvantages of each approach?

How privacy rights are protected

- By policy
 - Protection through laws and organizational privacy policies
 - Must be enforced
 - Transparency facilitates choice and accountability
 - Technology facilitates compliance and reduces the need to rely solely on trust and external enforcement
 - Violations still possible due to bad actors, mistakes, government mandates
- By architecture
 - Protection through technology
 - Reduces the need to rely on trust and external enforcement
 - Violations only possible if technology fails or the availability of new data or technology defeats protections
 - Often viewed as too expensive or restrictive

What system features tend to lead to more or less privacy?

Privacy by policy techniques

- Notice
- Choice
- Security safeguards
- Access
- Accountability
 - Audits
 - Privacy policy management technology
 - Enforcement engine

Privacy by architecture techniques

Best

- No collection of contact information
- No collection of long-term person characteristics
- k-anonymity with large value of k

Good

- No unique identifiers across databases
- No common attributes across databases
- Random identifiers
- Contact information stored separately from profile or transaction information
- Collection of long-term personal characteristics w/ low granularity
- Technically enforced deletion of profile details at regular intervals

Privacy stages	identifiability	Approach to privacy protection	Linkability of data to personal identifiers	System Characteristics
0	identified	privacy by policy (notice and choice)	linked	unique identifiers across databases contact information stored with profile information
1			linkable with reasonable & automatable effort	 no unique identifies across databases common attributes across databases contact information stored separately from profile or transaction information
2	pseudonymous	privacy by architecture	not linkable with reasonable effort	 no unique identifiers across databases no common attributes across databases random identifiers contact information stored separately from profile or transaction information collection of long term person characteristics on a low level of granularity technically enforced deletion of profile details at regular intervals
3	anonymous		unlinkable	 no collection of contact information no collection of long term person characteristics <i>k</i>-anonymity with large value of <i>k</i>

De-identification and re-identification

- Simplistic de-identification: remove obvious identifiers
- Better de-identification: also k-anonymize and/or use statistical confidentiality techniques
- Re-identification can occur through linking entries within the same database or to entries in external databases

Examples

- When RFID tags are sewn into every garment, how might we use this to identify and track people?
- What if the tags are partially killed so only the product information is broadcast, not a unique ID?
- How can a cellular provider identify an anonymous pre-paid cell phone user?

Privacy by Design Principles (PbD)

- 1. Proactive not Reactive; Preventative not Remedial
- 2. Privacy as the Default Setting
- 3. Privacy Embedded into Design
- 4. Full Functionality—Positive-Sum, not Zero-Sum
- 5. End-to-End Security—Full Lifecycle Protection
- 6. Visibility and Transparency—Keep it Open
- 7. Respect for User Privacy—Keep it User-Centric

Privacy by design

Rubinstein, Ira and Good, Nathan, Privacy by Design: A Counterfactual Analysis of Google and Facebook Privacy Incidents. 28 Berkeley Technology Law Journal 1333 (2013).

http://ssrn.com/abstract=2128146 or http://dx.doi.org/10.2139/ssrn.2128146

- PbD principles "more aspirational than practical or operational"
- Microsoft principles outdated (ignore social media) and don't provide insights into decision making behind "company approval"
- PbD requires "translation of FIPs into engineering and design principles and practices"

Privacy Impact Assessment

A methodology for

- assessing the impacts on privacy of a project, policy, program, service, product, or other initiative which involves the processing of personal information and,
- in consultation with stakeholders, for taking remedial actions as necessary in order to avoid or minimize negative impacts

D. Wright and P. De Hert, eds. *Privacy Impact Assessment*. Springer 2012.

PIA is a process

- Should begin at early stages of a project
- Should continue to end of project and beyond

Why carry out a PIA?

- To manage risks
 - Negative media attention
 - Reputation damage
 - Legal violations
 - Fines, penalties
 - Privacy harms
 - Opportunity costs

- To derive benefits
 - Increase trust
 - Avoid future liability
 - Early warning system
 - Facilitate privacy by design early in design process
 - Enforce or encourage accountability

Who has to carry out PIAs?

- US administrative agencies, when developing or procuring IT systems that include PII
 - Required by E-Government Act of 2002
- Government agencies in many other countries
- Sometimes done by private sector
 - Case studies from Vodaphone, Nokia, and Siemens in PIA book

Data governance

- People, process, and technology for managing data within an organization
- Data-centric threat modeling and risk assessment
- Protect data throughout information lifecycle
 - Including data destruction at end of lifecycle
- Assign responsibility

Beam discussion

- https://www.youtube.com/channel/ UC_Cqp2VdYp9YSQqK07blMmQ
- What privacy issues does this technology raise in the home environment? How might these issues be addressed?

Carnegie Mellon UniversityCyLab

Engineering & Public Policy