

Biometric Encryption (BE)

- Fuzzy Vaults (FV)
- Fuzzy Commitment (FC)
- Fuzzy Extractors (FE)
- Cancelable Templates (CT)
- Secure Sketch (SS)
- Biotopes and Vaulted Verification (VV)

Bachelor of

EXAMPLE: BIOMETRIC FUZZY VAULTS • Alice places a secret κ in a fuzzy vault • κ is locked using a set of elements from some public universe U κ is encoded in the coefficients of a d-degree polynomial p • Let V be points $((v_0, p(v_0)), \dots, (v_n, p(v_n)))$ • Chaff point pairs $(c_v C_i)$ are randomly generated and inserted into V, then V is shuffled. • To unlock user must find at least d values v,to recover *p* & κ. Each v, must match exactly!

Bachelor of In

CRACKING FUZZY VAULTS AND BE

- In our 2008 paper "Cracking Fuzzy Vaults" and Biometric Encryption" we showed three new attacks that break FV and BE.
 - Attacks via Record Multiplicity (ARM)
- Surreptitious Key-Inversion Attack (SKI)
- Blended Substitution Attack
- For FV the problem stem from storing $v_i \& p(v_i)$, e.g. ARM implies v_i reused so easily matched.
- Others have extended attacks to FC, FE, SS.
- Also, note that false accept rate (FAR) limits security/privacy - need high accuracy too.

Bachelor of Innov University of Colorado Calenda

Bachelor of Innova

	11	112 Bits		128 Bits		160 Bits	
	GA	FAR	GAR	FAR	GAR	FAR	
F.P. Fuzzy Vaults ¹	89	0.13	89	0.01	84	0	
Password Vault ²	88	?	86	?	79	?	
Bipartite Biotokens	97	0	97	0	97	0	
Comparison with Fuzzy Va	ults on stan	lar:	Rite	512 6	kno	own)	
Comparison with Fuzzy Va	ults on stan 192 g.s G t	iar 256 I GA	Bits R	512 I GA	kno Bits R	own)	
Comparison with Fuzzy Var	ults on stan 192 g.s G t	256 I GA	Bits R 14	512 E GA	Bits R	own)	
Comparison with Fuzzy Van FVC02 DB1 FVC02 DB2	ults on stan 192 g.s G l 7 7	256 I GA	Bits R 14	512 E GA	Bits R 95 92	own)	

BKI ADVANTAGES

- Reduce user friction by addressing privacy concerns while improving security
- Cloud-stored strong identities
- Asymmetric identity modeling
- Move "identity" into the digital signature/ key management space
- New models for secure payment

Bachelor of Innovation" University of Colorado Colorado Springer

