Gesture Authentication for Mobile Devices

Shuja Shahzada
Carleton University
Ottawa, Canada
shujashahzada@gmail.com

Sonia Chiasson
Carleton University
Ottawa, Canada
chiasson@scs.carleton.ca

Robert Biddle
Carleton University
Ottawa, Canada
robert.biddle@carleton.ca

1. INTRODUCTION

The most common approach to authentication involves a password entered on a keyboard with letters, numbers and special symbols. Recently, however, touchscreen devices have become widespread. Text passwords are still most commonly used on these devices even though studies show that users generally perform better with text input using a physical keyboard than a virtual keyboard [3]. In this paper we present a design and evaluation of a new gesture based password scheme for mobile devices, GesturePass. We speculated that gestures would be familiar and make passwords easy to enter without burdensome visual attention.

2. DESIGN

GesturePass is a recall-based scheme that randomly assigns a set of four simple gestures as a password. The ten possible gestures included are: drag up, drag down, drag left, drag right, tap, hold, pinch in, pinch out, rotate clockwise and rotate anticlockwise. We choose these gestures because they are commonly used gestures in applications that recognize gestures, such as Google Maps. Tap, hold and drag are single touch gestures, whereas the turns and pinches are multi-touch gestures. Single touch gestures require one finger (one point of interaction). Multi-touch gestures require the use of multiple fingers (multiple points of interaction) but do not specify exactly which fingers should form the gesture. Any two fingers that allowed the motion of the gesture could be utilized to perform a pinch or turn. For example, a pinch could be done with a index finger and a thumb, an index finger and a middle finger, or both index fingers (figure 1).

GesturePass was deployed as a part of the existing MVP framework [1], a system specifically designed for conducting research studies of authentication schemes. GesturePass contains about 100 lines of PHP, and about 200 lines of JavaScript. The PHP code runs on the server, and generates JavaScript code that runs in the web browser. The code was adapted from the Hammer JavaScript event logger sample program [2].

Figure 1: Example of Pinch In Gesture on GesturePass (with thumb and index finger)

3. EVALUATION

We compared GesturePass with a traditional PIN on a Nexus 4 phone and a Nexus 7 tablet. The main focus was investigating GesturePass and the different devices were chosen for exploratory comparison. We analyzed the number of password practices, login attempts, login times, gesture times, and a range of usability questionnaire responses for each device.

Our control condition used a system-assigned PIN password scheme that was implemented using JavaScript. Our system used a large on-screen keypad input rather than the standard built-in Android keyboard. To log in successfully using this scheme, participants had to remember a randomly generated four digit PIN password. The password spaces of the two condition were therefore identical.

There were 30 participants in this study. 15 participants were assigned the phone condition and 15 participants were assigned the tablet condition. Each condition had one gesture password and one PIN. Participants ranged in age from 18 to 33, with an average age of 24. The experiment consisted of three separate sessions, to test memorability and usability over time, totalling about an hour in a lab environ-
Gesture Differences: For login time we also looked into specific gesture times for both the tablet and phone conditions. Entry times for each gesture in the phone condition can be seen in figure 2. As expected, tap was the quickest gesture and hold was the slowest gesture. By design the hold gesture require 500 milliseconds. The drag gestures, including dragup, dragdown, dragleft and dragright, were faster than the turn (turnright, turnleft) and pinch (pinchin, pinchout) gestures. The turn and pinch gestures also have very similar times for both devices. In addition to the longer entry times, the multi-touch gestures caused more errors.

Perception: Questionnaire responses suggest that in terms of the ease of use, accessibility and security components, GesturePass was preferred over PINs. In addition, the tablet gesture condition generally scored higher medians than the phone gesture condition. Our exploratory analysis suggest that most users preferred the tablet gesture condition. We speculate this is because users could more easily enter gestures (especially multi-finger gestures) on the tablet than the mobile phone. Participants also commented that they liked GesturePass because it was easy and fun to use, entertaining and more interactive. (“...Novel and pretty easy to use...”, “...entertaining ...”, “...fun new experience ...” ; “The gestures make it more interactive.”)

4. CONCLUSIONS

We designed a novel gesture password system for mobile devices. Our results suggest that the new scheme might be a viable alternative to a traditional PIN password. We compared GesturePass and a PIN with comparable password spaces. We found no statistical differences in the number of login attempts as a PIN after three sessions, and GesturePass was favoured over PIN passwords in our usability analysis. In addition, our usability analysis show that GesturePass was preferred over PINs especially for tablets. However, our studies also show that participants did not favour using even simple multi-touch gestures.

We feel our initial study shows further research may be worthwhile. For example, our study was conducted in a controlled lab environment. Alternative tests could be done in different mobile situations such as in public areas while walking. Another limitation is that although the memorability of the passwords was tested, participants were not required to follow traditional procedures to reset their passwords nor were the password restricting access to resources of value.

5. ACKNOWLEDGMENTS

This research was funded by NSERC SurfNet, the strategic research network on surface computing applications.

6. REFERENCES

Figure 2: Phone Gesture Times