
Poster: Highlighting Disclosure of Sensitive Data
on Android Application with Static Analysis

Takuya Sakashita, Shinpei Ogata, Haruhiko Kaiya and Kenji Kaijiri
Graduate School of Science and Technology, Shinshu University

Wakasato 4-17-1, Nagano, Nagano 380-8553, Japan
{13tm518g, ogata, kaiya, kaijiri}@shinshu-u.ac.jp

1. INTRODUCTION
In this paper, a method for highlighting disclosure of sensitive
data on an android application is proposed. The sensitive data for
example are e-mail addresses, phone number, etc. In our method,
the source code of the application is analyzed statically for the
highlighting. We aim to improve insufficient information of the
existing permission system so that android users can determine
whether the application is malware more correctly. Three types of
information are highlighted. Firstly, it’s where sensitive data are
sent. Secondly, it’s the type of the sensitive data such as phone
number. Finally, it’s whether android permissions for the sending
of the sensitive data are related on the actual program. CASE tool
for supporting the static analysis and highlighting is also created.

2. PROBLEM
2.1 Malware
Recently, various android malware has appeared in Google play.
The malware causes serious problems to users. A kind of the
malware discloses sensitive data for abusing the data. Other kind
of the malware sends premium SMS for stealing user’s money
without user’s permission. In contrast, some applications send
sensitive data to the outside for online back-up of addresses. This
sending is often reasonable. Precise and automatic determination
of whether an application is malware is impossible. Such behavior
of the application however does not be informed to the users.

2.2 Lack of Information to Suspect Malware
A permission system is provided for protecting privacy and
security of android users in the android OS. For example, the
permissions are “read phone state and identity,” “full internet
access,” etc. A user allows an application to use such permissions
when he/she installs the application. There are however three
problems on how to show permission information to the user.
Firstly, what an application does with permissions is not shown.
The user cannot therefore have the opportunity to know why the
application needs the permissions without users’ informal articles
of review sites. Secondly, the user cannot confirm what sensitive
data the application uses in detail. The permission information is
abstracted excessively as “read phone state and identity.” Thirdly,
it is unclear whether sensitive data are sent to the outside. The
user should suspect disclosure of sensitive data if phone number
read with “read phone state and identity” is sent to a URL with
“full internet access” as Fig.3. Whether such permissions are
related on the actual program however is not shown.

2.3 Lack of Android User’s Knowledge
Various users from novices to experts of the android exist. The
novices might overlook malware even if installation information

mentioned above is detailed. A method to share application
information among various users therefore is needed. The fact that
over 70 percentages of 308 users read the reviews of the
application which he/she installs [1] bears out our opinion.

3. METHOD
We try to settle the problems in section 2 with the following
solutions. Firstly, the types of sensitive data which are read by
using the permission mentioned-above are analyzed. The relation
between sensitive data and the outside such as URL where
sensitive data are sent also is analyzed. We also propose a method
for highlighting analyzed information as Web pages so that
various users can communicate each other for determining
malware more correctly before its installation.

3.1 Overview
Fig. 1 shows the overview of our highlighting method. Actions
and data are explained in the following sections.

Android Application
Source Code

Preprocess
Permission Map

Analysis
Web Pages for Highlighting
Analyzed Information

Highlighting

:data:action
input transit output

URL list

Figure 1. The overview of our highlighting method.

We propose one artifact and one process newly. The artifact is
“Web pages for highlighting analyzed information.” The process
is how to highlight disclosure of sensitive data with static analysis.

3.2 Analyzing Disclosure of Sensitive Data
Table 1. The elements to be mapped by static analysis

ID Source code elements and permission information to be mapped

1 Sensitive data type (SDT) Permission for getting sensitive
data

2 SDT API call to get sensitive data

3 API call for sending data to the
outside

Permission needed for sending
data to the outside

4 Variable (field, argument and
local variable)

Value read with API call

5 Variable Variable

6 Variable Method invoked

7 Value read with API call SDT identified by API call

The inputs to our method are source code, the permission map [2]
and URL lists. The source code is the target of analysis. It is not

very hard to get source code of android applications from Google
play because of recent decompiling tools such as apk-tools,
dex2jar and JD for Java. We therefore focus on the source code
analysis for highlighting the analysis result. The permission map
for grasping the mapping between permissions and API calls is
used in our analysis. We also use the Abstract Syntax Tree (AST)
parser in Eclipse for realizing static analysis. Table 1 shows the
elements to be mapped in the analysis for identifying the relations
among permissions, sensitive data and the outside.

The relations among permissions, SDTs and API calls can be
analyzed in the “Preprocess” action because these relations are
already clear. The SDTs for example are “Phone number of my
own,” etc. The SDT is taken into account if an API call is mapped
to the SDT directly. For example, “android.telephony.Telephony
Manager.getLine1Number()” is mapped to “Phone number of my
own.” We name the SDT by referring to android API reference.
These relations are corresponding to 1, 2 and 3 in Table 1. Then,
the relations among variables, SDTs and values can be determined
in the “Analysis” action because the relations can be identified on
the basis of the flow and calling relationship of methods. These
relations are corresponding to 4, 5, 6 and 7 in Table 1. Some API
calls receive/send data from/to the outside with permissions. The
Web page in Fig. 3 is generated when such API call was analyzed.

Fig. 2 shows an image of the analysis for mapping between the
permissions of “full internet access” and “read phone state and
identity.” This source code is a simplified example of malware
which sends phone number to the outside. The boxed elements in
Fig. 2 are mapped by the analysis. The types and/or values of
each boxed element are shown as the strings with under line in
Fig. 2. The bottom of Fig. 2 shows the result of the mapping. The
encircled elements depict the type or value of the elements in
Table 1. The lines depict the mapping between the encircled
elements. The relations of the permissions is identified by tracing
from “execute(…)” to “getLine1Number().” The URL of
“http://...” is also identified by tracing from “httpPost” to the
literal of “http://...” via “uri”, but Fig. 2 does not depict it.

public class MainActivity extends Activity {

private List<NameValuePair> post_params = new ArrayList<NameValuePair>();

public void onCreate(Bundle savedInstanceState) {

String tel = ((TelephonyManager)getSystemService("phone")).getLine1Number();

exec_post(tel);

}

private void exec_post(String tel) {

this.post_params.add(new BasicNameValuePair(“tel”, tel);

URI uri = new URI(“http://example.com/script/sample.php”);

HttpPost httpPost = new HttpPost(uri);

httpPost.setEntity(new UrlEncodedFormEntity(this.post_params, "UTF‐8"));

HttpClient httpClient = new DefaultHttpClient();

httpClient.execute(httpPost, this.response_handler);

}

}

Variable API call, Permission:READ_PHONE_STATE, SDT:Phone number of my own

Variable

Variable

API call, Permission:INTERNET

getLine1Number() Phone number of my own READ_PHONE_STATE

tel post_params httpPost execute INTERNET

Figure 2. The analysis of the relation of the permissions.

3.3 Highlighting Analyzed Information
We finally highlight the analyzed information as Web pages so
that users can understand disclosure of sensitive data before the
application installation. Fig. 3 shows the analysis result in Fig. 2.
At the top of Fig. 3, The “Possibility of Disclosure” shows the
SDT. Next, the relation of the “Permissions” is shown. The
“Purpose” is identified the purpose of sending sensitive data on

the basis of URL lists. The purpose for example is unknown or
advertisement. The “URL” means the outside where the sensitive
data are sent. The “Request Parameters” is also shown. Most of
this information can be hidden by selecting SDT which is a toggle
button. A user can easily grasp the sensitive data an application
handles even if a lot of information is highlighted.

This block can be
hidden by selecting
the SDT of “Phone
number of my own.”

Figure 3. A part of the Web page as the result of highlighting.

4. DISCUSSION
The highlights of permission relations, disclosure possibility and
URL may make the user determine is malware correctly. On the
other hand, our analysis may make the users misunderstand
malware if the accuracy of analysis is low. We therefore plan to
evaluate the accuracy of our analysis in the future.

5. RELATED WORK
Enck et al.[3] have realized TaintDroid for monitoring disclosure
of sensitive data. It however is difficult to bridge the gap of the
knowledge between novices and experts because the disclosure is
notified to individual users. Our research adopts complementary
approach of such method by highlighting the disclosure as Web
pages. Secroid [4] is a service to estimate the risk of individual
applications before the installation. For example, the risk becomes
high if an application might send phone number to the outside.
The user therefore can understand the risk intuitively. In contrast,
the user might recognize valid applications as malware. We adopt
neutral highlighting without determining the risk.

6. CONCLUSION
In this paper, a method for highlighting disclosure of sensitive
data by analyzing an android application is proposed. As future
work, the effectiveness of our method compared with the existing
permission system is evaluated through providing the highlighted
information to end users. The accuracy of our analysis also is
evaluated. How to introduce dynamic analysis for enhancing the
sufficiency and accuracy of the analysis is considered.

7. REFERENCES
[1] Felt, A.P., et al., 2012 Android Permissions: User Attention,

Comprehension, and Behavior. In Proc. of SOUPS 2012
(Washington, DC, USA, July 11-13, 2012).

[2] Felt, A.P., et al., 2011 Android Permissions Demystified. In
Proc. of CCS’11(Chicago, Illinois, USA, October 17–21,
2011).

[3] Enck, W., et al., TaintDroid: An Information-Flow Tracking
System for Realtime Privacy Monitoring on Smartphones. In
Proc. of the 9th USENIX Symposium on OSDI’10
(Vancouver, BC, Canada, Oct. 4-6, 2010).

[4] Secroid, http://secroid.com/, accessed at 28 May 2013.

