
Poster: UserCSP- User Specified Content Security Policies

Kailas Patil
National University of

Singapore
patilkr@comp.nus.edu.sg

Tanvi Vyas
Mozilla Corporation

tanvi@mozilla.com

Frederik Braun
Mozilla Corporation

fbraun@mozilla.com

Mark Goodwin
Mozilla Corporation

mgoodwin@mozilla.com

Zhenkai Liang
National University of

Singapore
liangzk@comp.nus.edu.sg

ABSTRACT
Content Security Policy (CSP) is a browser security mechanism
that aims to protect websites from content injection attacks. To
adopt CSP, website developers need to manually compile a list of
allowed content sources. Nearly all websites require modifications
to comply with CSP’s default behavior, which blocks inline scripts
and the use of the eval() function. Alternatively, websites could
adopt a policy that allows the use of this unsafe functionality, but
this opens up potential attack vectors. When websites do not im-
plement CSP, security savvy users do not have the control to proac-
tively protect themselves. To make adoption of CSP easier, we
propose UserCSP, a Firefox extension that uses dynamic analysis
to automatically infer CSP policies, facilitates testing, and gives
savvy users the authority to enforce client-side policies on web-
sites.

1. INTRODUCTION
The root cause of code injection problem on websites is that

browsers are unable to distinguish between legitimate and mali-
ciously injected content in a web application. Content Security
Policy (CSP) [1] aims to solve this problem by providing a declar-
ative content restriction policy in an HTTP header that the browser
can enforce. CSP defines directives associated with various types of
content that allow developers to create whitelists of content sources
and instruct client browsers to only load, execute, or render con-
tent from those trusted sources. However, writing an effective and
comprehensive CSP policy for websites is laborious. A policy can
break website functionality if legitimate content is overlooked dur-
ing policy generation. Web developers at large technology compa-
nies may not have direct access to change the CSP header on web
servers, making it difficult to iterate over policies.

Developers are primarily focused on user experience and provid-
ing rich functionality to end users. The reluctance of developers to
adopt CSP, as seen in our experiments, shows that they are unwill-
ing to sacrifice functionality for security because they are worried
about losing customers. However, security savvy users may prefer
security over rich functionality. Since browsers do not currently ex-
pose a policy enforcement mechanism directly to users, users lack
control over their own security when websites do not implement
CSP. If developers and users do not experiment with CSP, it is dif-
ficult for the community to iterate on the CSP specification [2] to
come to a more usable solution.

To assist website administrators in constructing Content Security
Policies, CSP AiDer [3] uses crawler to crawl all the pages asso-
ciated with a website and recommends a CSP policy based on the
types of content found and the sources of that content. However,
CSP AiDer is not open-source and hence not available to most web

developers. UserCSP, on the other hand, is an open-source project
available for download on the Mozilla Add-on gallery [4] as well
as on GitHub [5].

The goals of UserCSP are two-fold: i) to allow security savvy
users to specify their own CSP policies, and ii) to allow developers
to experiment with CSP policies on their production pages. More-
over, UserCSP assists users and developers in constructing com-
prehensive CSP policies by providing them automatically inferred
Content Security Policies that they can use as a starting point for
experimenting with CSP on a website.

In summary, this paper makes the following contributions:

• We design and prototype UserCSP to automatically generate
Content Security Policies and then we evaluate compatibility
of the inferred security policies on websites.

• We propose an approach for applying security policies on the
client-side. Our approach allows savvy users to specify their
own custom Content Security Policies.

Our experiments show a lack of Content Security Policy imple-
mentations and the necessity for a tool like UserCSP to help pro-
mote adoption. UserCSP provides developers with an easy mech-
anism to create an effective, comprehensive, and strict Content Se-
curity Policy that secures their users and does not break website
functionality.

2. UserCSP DESIGN
UserCSP helps developers and users write comprehensive poli-

cies for websites by providing them with a GUI to add and mod-
ify CSP policies. UserCSP monitors the browser’s internal events
(including HTML parsing, HTTP requests, and XHR requests trig-
gered by scripts running in the JS engine). It then dynamically
analyzes the content type loaded by a webpage and the source of
that content. This information is useful to automatically infer the
policy for a webpage.

When users visit a website, UserCSP performs one of the fol-
lowing actions:

• If the website has defined a CSP policy, but the user hasn’t,
then UserCSP does not interfere with the website defined
policy. However, it does allow the user the option to amend
the website’s policy.

• If a user has specified a CSP policy for a website, but the
website administrator hasn’t, then the user’s policy is en-
forced.

• If both a user specified CSP policy and a website defined pol-
icy exist, then the user has a choice to either apply their own

1



policy or adopt the website defined policy. Moreover, users
can choose to combine their custom policy with an exist-
ing website policy by selecting a strict (intersection) or loose
(union) combination policy.

• If neither the user nor the website specify a CSP policy, but
the user has specified a global policy that can be used for
websites that do not have site-specific policies defined, then
UserCSP will apply the global policy.

• If neither the user nor the website specify a CSP policy, and
there is no global policy, then UserCSP does not affect the
content loading on the website.

To allow automatic policy inference for websites, UserCSP uses
dynamic analysis to monitor content loaded by a webpage and rec-
ommends a CSP policy based on the content types and content
sources included in the webpage. It also monitors the resources
dynamically added to the webpage by JavaScript.

3. ANALYSIS & RESULTS
We tested UserCSP’s user defined CSP feature and automatically

infer CSP feature with the Alexa Top 100 websites1. Manually de-
fined CSP policies are harder to evaluate since they require several
rounds of refinement and HTML source code inspection to record
content sources. We initially seeded the policies with same-origin
restrictions and then expanded them since many websites require
content from CDN’s and sub-domains.

To test compatibility of the automatically infer CSP feature of
UserCSP, the extension inferred policies for each of the Alexa Top
100 websites and then applied the policies onto their respective
website home pages (Figure 1 includes an example of automati-
cally inferred policy). Reports were created for each website and
examined for CSP violations2.

default-src ’self’;
script-src http://ads1.msads.net

http://kaw.stj.s-msn.com;
img-src http://udc.msn.com

http://kaw.stb.s-msn.com
http://b.scorecardresearch.com
http://c.in.msn.com
http://www.bing.com
http://kaw.stb01.s-msn.com
http://kaw.stc.s-msn.com
http://kaw.stb00.s-msn.com;

style-src http://kaw.stc.s-msn.com;
frame-ancestors *;

Figure 1: Inferred CSP for msn.com
The number of whitelisted origins per-policy ranged from 1 to

33, with a mean of just over 7 origins per-policy and a standard
deviation of 6.52. Over 25% of websites required more than 10
origins, indicating that creating a comprehensive and effective CSP
policy is a challenging task. When there are more than a handful of
resources to whitelist, developers are likely to whitelist everything
by including "*" in a directive instead of searching for all the nec-
essary origins; this makes the policy less restrictive than it could be.
By providing a mechanism to infer the policy, UserCSP provides a
quick, effective, and comprehensive policy for developers to set on
their websites.
1Three websites containing adult content were excluded from our
testing
2In order to adhere to the same-origin-only report-uri restriction
in Firefox without alerting websites with our custom CSP testing,
we used http-on-modify-request to capture and then cancel HTTP
requests that contained violation reports.

Our tests show that none of the Alexa Top 100 websites have
implemented CSP. A recent study revealed that only 79 out of the
Alexa Top 1,000,000 websites implement CSP, showing that CSP
has a very low adoption rate [6].

After applying UserCSP’s inferred policies, all the Alexa Top
100 websites generated CSP violation reports that showed viola-
tions for the inline script default restriction. In addition, 11 web-
sites generated CSP violation reports for using eval()3. This exper-
imental survey implies that websites commonly use inline scripts.

To further test this theory, we scanned the Alexa Top 25,000
websites using the Scrapy framework [7]. Of the 23,195 acces-
sible websites, 22,324 (96.2%) were using inline scripts or inline
event handlers.

4. CONCLUSION
Content Security Policy has not been widely adopted because of

the challenges involved in creating a comprehensive and functional
policy. Since adoption is controlled by developers, users lack con-
trol over their own security. Users do not have a mechanism to
apply Content Security Policies on the websites that they visit and
cannot protect themselves from Cross-Site Scripting and Clickjack-
ing attacks.

UserCSP helps break down the challenges involved in adopt-
ing Content Security Policy with its feature to automatically in-
fer policies. It also puts control into the users hands by providing
them a mechanism to protect themselves with custom policies that
they can create and modify. Our analysis and results show that an-
other barrier to Content Security Policy adoption is the use of inline
JavaScript. To overcome this, we would like to experiment further
with the proposed script-nonce and script-hash directives that are
under discussion for inclusion in the CSP 1.1 specification [8].

Acknowledgments
We thank Sid Stamm for his help on the implementation of UserCSP.
We thank the anonymous reviewers for their valuable comments.

5. REFERENCES
[1] Sid Stamm, Brandon Sterne, and Gervase Markham. Reining

in the web with content security policy. In Proceedings of the
19th International Conference on World Wide Web, 2010.

[2] W3C Candidate Recommendation. Content security policy
1.0. http://www.w3.org/TR/CSP/.

[3] Ashar Javed. Csp aider: An automated recommendation of
content security policy for web applications. In IEEE Oakland
Web 2.0 Security and Privacy (W2SP 2012), 2012.

[4] Kailas Patil, Tanvi Vyas, and Fredrik Braun. Usercsp::
Add-ons for firefox. https://addons.mozilla.org/en-
US/firefox/addon/newusercspdesign/.

[5] Kailas Patil, Tanvi Vyas, and Fredrik Braun. Usercsp. github.
https://github.com/patilkr/userCSP.

[6] Isaac Dawson. Security headers on the top 1000000 websites.
http://www.veracode.com/blog/2012/11/
security-headers-report/.

[7] ScrapyProject. Scrapy: An open source web scraping
framework for python. http://scrapy.org/.

[8] W3C Editor’s Draft. Content security policy 1.1.
https://dvcs.w3.org/hg/content-security-
policy/raw-file/tip/csp-
specification.dev.html.

3Websites that generated CSP violation reports for the use
of eval(): www.youtube.com, www.qq.com, bbc.co.uk,
adobe.com, sohu.com, aol.com, youku.com, cnn.com,
dailymotion.com, imgur.com, neobux.com

2


