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ABSTRACT 
Phishing is an ongoing kind of semantic attack that tricks victims 
into inadvertently sharing sensitive information. In this paper, we 
explore novel techniques for combating the phishing problem 
using computational techniques to improve human effort. Using 
tasks posted to the Amazon Mechanical Turk human effort market, 
we measure the accuracy of minimally trained humans in 
identifying potential phish, and consider methods for best taking 
advantage of individual contributions. Furthermore, we present 
our experiments using clustering techniques and vote weighting to 
improve the results of human effort in fighting phishing. We 
found that these techniques could increase coverage over and were 
significantly faster than existing blacklists used today. 

Categories and Subject Descriptors 
D.4.6 [Security and Protection]; K.4.4 [Electronic Commerce]; 
H.5.2 [User Interfaces] 

General Terms 
Algorithms, Security, Human Factors 
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1. INTRODUCTION 
Many problems still require human intelligence to solve. Some 
require human intelligence as an intrinsic part of the process, such 
as in a democratic election. Others have no known technical 
solutions which match human performance, such as image 
labeling [1]. In the case of certain kinds of computer security tasks, 
it has been suggested that it is too risky to take the human entirely 
out of the loop [7]. No matter what the problem, it is important to 
consider how, when, and how much human effort is necessary to 
determine an appropriate and sufficient solution. 

One particularly difficult to automate problem that currently 
requires human intelligence is identifying phishing scams (though 
primarily for reasons of liability, as we discuss below). The most 
common form of phishing is where attackers build convincing 
imitations of legitimate websites and lure unsuspecting victims to 
divulge sensitive personal information. Phishing attacks are 
expensive to society. Moore and Clayton estimated that the 
minimum loss to consumers was $320 million annually [25]. Note 

that this number does not include loss of productivity, cost of 
maintaining a helpdesk to field calls, recovery costs, or damage to 
an organization’s reputation. 

Many feature-based algorithms have been developed to 
automatically detect phishing sites, for example [9][21][42]. The 
advantage of heuristics and machine learning approaches is that 
they can rapidly identify attacks with no human involvement. 
However, these methods are prone to false positives (incorrectly 
labeling legitimate sites as phish) as well as false negatives 
(incorrectly labeling phishing sites as safe). False positives are 
particularly of concern. Sheng et al have observed that industry 
has been slow to adopt heuristics primarily from concerns over 
liability due to false positives [30].  

An alternative that has been widely adopted by industry is human-
verified blacklists. These blacklists contain URLs of sites that 
have been manually verified as phish. Three well-known phishing 
blacklists are operated by Microsoft, Google, and PhishTank. The 
main advantage of blacklists is that there are very few, if any, 
false positives, thus reducing the liability risk of incorrectly 
labeling a legitimate site as a phishing attack. Another advantage 
is the ability to detect new kinds of phishing attacks without 
explicit retraining. However, human verification is inherently 
more labor intensive and can be much slower in detecting attacks. 
Finally, human verification can also be overwhelmed by simply 
generating more phishing sites and/or URLs for phishing sites, as 
has been done with automated phishing attack toolkits and “fast 
flux” techniques that hide a phishing site behind a large number of 
compromised hosts to make detection more difficult [35].  

 January 2010 January 2011
Submissions 18,836 16,019
Total Votes 54,847 69,648
Valid Phish 5,751 12,789
Invalid Phish 518 549
Median Time 12hrs 10min 2hrs 23min
Table 1. PhishTank self-reported statistics. Submissions 
require a minimum of 4 votes before labeling, with at least 
70% agreement (some votes weighted differently). Median 
time has improved significantly.  

Of particular interest to us here is the blacklist maintained by 
PhishTank, which uses a wisdom of crowds approach. Volunteers 
submit potential phish and also vote on submitted URLs, 
identifying them as phish or legitimate. According to PhishTank’s 
own statistics [33], out of 1.1M URL submissions from volunteers, 
there were 4.3M votes, resulting in about 646k identified phish 
between October 2006 and February 2011. 
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PhishTank has improved in performance as shown in Table 1. 
From Jan 2010 to Jan 2011, the median time to identify a phish 
has dropped from 12 hours to about 2.4 hours. The percentage of 
valid phish identified has also increased, going from 5,751 out of 
18,836 (30.5%) in January 2010 to 12,789 out of 16,019 (79.8%). 

We have two observations. First, for January 2011, there are still 
2,681 URLs not identified as phish or legitimate. Most of these 
URLs represent “wasted” votes which did not reach the required 
number of votes for verification. Optimally, with 4 votes required 
to identify a phish, 69,648 votes could have identified a maximum 
of 17,412 labels rather than the 12,789 phish and 549 legitimate 
sites actually identified. Second, a median delay of 2.4 hours still 
represents a significant gap in protection, as most victims of a 
phishing scam fall for it within 8 hours of the start of the attack 
[19]. Furthermore, 2.4 hours only represents the delay from when 
the URL was first submitted to PhishTank, meaning that the phish 
was in the wild longer. Lastly, 2.4 hours represents the median, 
with past work suggesting that there is a power-law distribution in 
identifying and taking down phish [26].  

We believe a promising solution is to improve the wisdom of 
crowds by combining manually verified blacklists with 
computational techniques, to keep false positives extremely low 
while also reducing the time to verify attacks. Such an approach 
would benefit not only sites like PhishTank, but also other 
manually-verified blacklists such as Google and Microsoft. A 
hybrid approach could also help with forensic analysis (such as 
identifying trends in phishing attacks and attacked brands), as well 
as help reduce the labor in maintaining the many databases that 
store data about current and past phishing attacks. 

In this paper, we present the results of a study that we conducted 
with Aquarium, an experimental system we developed on top of 
Amazon’s Mechanical Turk system for gathering human-verified 
labels on potential phishing sites. From a broad perspective, this 
paper looks at how to apply crowdsourcing techniques to a 
security task, and how to use computational techniques to improve 
the performance of a crowd. More specifically, this paper makes 
the following research contributions: 

1. We present the design of Aquarium, a novel phish detection 
approach that makes use of two points in this design space, 
namely (a) clustering similar phish together and having 
minimally trained participants vote on clusters rather than 
individual phish, and (b) developing a vote weighting 
mechanism based on a participant’s historical performance.  

2. We present an evaluation of our two approaches, examining 
time to label a URL, accuracy, coverage, and monetary cost. 
Through a two-week study of verification of suspicious URLs, 
we show that our approach achieves a TP of 95.4% with a FP of 
0%, with a median time to label of 0.7 hours. 

3. We present our voteweight formula and the results of our 
parameter tuning, which can reduce the median time to label a 
URLs down to 0.5 hours. 

2. RELATED WORK 
Work on combating phishing can be categorized into four major 
approaches: making the problem invisible to end users, improving 
the design of user interfaces to help end-users make better 
decisions, improving end-user training, and leveraging wisdom of 
crowds.  

2.1 Making it Invisible to End-Users 
2.1.1 Algorithms for Detecting Phish 
The main goal of this anti-phishing strategy is to keep users from 
ever seeing potential phishing attacks. Example past work in this 
category includes phishing email filters and phishing web page 
detection (which is complemented by taking down the offending 
web site). Here, we will focus the related work on algorithms for 
automatically detecting phishing web pages.  

One class of algorithms uses URL features to detect phishing web 
pages. For example, Garera et al [9] categorized phishing URLs 
into four groups, each capturing a common phishing pattern, and 
used a set of fine-grained features from the phishing URLs 
together with other features to detect phish. 

Another complementary class of algorithms makes use of features 
based on the HTML content to detect phish. For example, in [21], 
Ludl et al applied a J48 decision tree algorithm on 18 features 
solely based on the HTML and URL. Another feature-based work 
exploring the HTML content is CANTINA [42], in which Zhang 
et al proposed a content-based method using a simple linear 
classifier on top of eight features.  

A similar area of work examines the visual and image elements to 
protect users from phishing attacks. To exploit visual similarity 
between web pages, Liu et al [20] proposed a method using three 
similarity metrics, i.e., block level similarity, layout similarity and 
overall style similarity, based upon web page segmentation. A 
page is reported as phishing if any metric has a value higher than a 
threshold. SpoofGuard [4] used image check as one feature, 
examining the domain name and the existence of popular target 
site logos on a given web page. Medvet et al [23] computed a 
signature using the visible text, visible images, and overall visual 
look-and-feel to compare the suspected pages with their legitimate 
counterparts. Recently, Chen et al [3] took a holistic view of the 
visual similarity between web pages, and applied compression 
algorithms on the pages as indivisible entities to detect phish. 

Other techniques have been proposed that detect phish by 
inferring the target brand being phished. For example, Pan et al 
[27] proposed a method that extracts the web page identity from 
key parts of the HTML via the x2 test, and compiled a list of 
features based on the extracted identity. Xiang et al [37] proposed 
a hybrid detection model that recognizes phish by discovering the 
inconsistency between a web page’s true identity and its claimed 
identity via search engine and information extraction techniques.  

Our work with Aquarium uses minimal algorithms to detect phish. 
Instead, it relies on optimizing human verification by weighting 
more effective participants more highly, and by clustering similar 
web pages together. Perhaps the closest work to Aquarium is our 
past work in augmenting existing human-verified blacklists by 
using shingling (a popular near-duplicate detection algorithm used 
by search engines) to compare a given page to known phish [39].  
In contrast, Aquarium looks at techniques for improving the 
verification of blacklists in the first place. 

2.1.2 Algorithms for Managing Information Flow 
Researchers have also proposed approaches to guard users against 
phishing attacks by monitoring the flow of information such as 
passwords. For example, AntiPhish [17] watches the password 
field of HTML forms and searches the domain of the site being 
visited among a list of previous logins when an identical password 
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was used, warning users of potential attacks if a domain match is 
not found. Rosiello et al proposed an algorithm to address 
weaknesses in AntiPhish [28]. When the user enters in a password, 
their system checks the similarity of the HTML between the web 
page currently being visited and one previously visited before that 
used the same password. PwdHash [29] uses a hash value 
computed from the user's password and the website domain when 
authenticating, rather than the plain text password. This approach 
makes password stealing through phishing much harder. Yue et al 
[40] designed a client-side tool called BogusBiter, which sends a 
large number of bogus credentials to suspected phishing sites, 
hiding the real credential among the bogus ones. 

2.1.3 PhishTank and Manually-Verified Blacklists  
There are a number of phishing blacklists available. Perhaps the 
most popular are offered by Microsoft, Google, and PhishTank. 
Zhang et al presented an evaluation of these and other automated 
detection tools [41], showing that there was still many phish not 
detected by any tools even after 24 hours.  

We will focus our description on PhishTank. PhishTank [33] is an 
open anti-phishing site launched in October 2006 to provide 
parent company OpenDNS with a reliable phishing dataset. 
Anyone who creates an account can submit potential phish and 
vote on submitted phish. Phish with enough verification votes are 
added to a blacklist. Submitted phish that do not gather a 
sufficient number of votes may never get a final label, and 
PhishTank does not publish this list of unknown results. 
Submissions that either do not have enough votes to verify as 
phish or are labeled as legitimate are still findable on the site but 
are not included in any further processing. 

PhishTank automatically removes sites that are down or not 
responding from the verification queue. PhishTank attempts to 
generate a thumbnail for each submitted site, as well as collecting 
other technical details about the hosting company and hosting 
network, to help users determine the nature of a submitted site. 

There have been studies in the past examining PhishTank. The 
closest work to ours is by Moore and Clayton, who found that 
PhishTank’s participation follows the common power-law pattern 
seen in many online sites, and discovered that users who only 
periodically participate are more prone to making errors in 
labeling [26]. Moore and Clayton offer three lessons for 
improving PhishTank: (1) addressing power-law issues of 
participation, (2) having crowd-source decisions be hard to guess, 
and (3) not having users work harder than necessary. Our work 
somewhat addresses the first issue, and tackles the third issue 
directly. Our work explores individual accuracy in a similar 
setting, while also considering approaches to further improve the 
performance and reliability of a wisdom of crowds approach. We 
examine ways of managing the second issue in our discussion. 

2.2 Improving the User Interface 
Another primary strategy for anti-phishing is to improve user 
interfaces and help users make better decisions. Examples of past 
work here include Dhamija et al’s work in dynamic security skins 
[5], Wu et al’s Web Wallet [36], and Egelman et al’s study on 
browser anti-phishing warnings. Given that our work focuses on 
combining human verification with computational techniques, we 
will not discuss these past projects in detail. 

2.3 Training End-Users 
The third primary strategy for anti-phishing is to train end-users. 
Examples of past work here include Anti-Phishing Phil, a game 
designed to engage the participant while progressively exposing 
them to more sophisticated phish-identification training [31], and 
PhishGuru, which uses simulated phishing attacks to train end-
users [19]. Our work with Aquarium made use of Anti-Phishing 
Phil to train participants, and focuses on using minimally trained 
participants to help identify phishing web sites. 

2.4 Leveraging Wisdom of Crowds 
There has been a substantial amount of work looking at how to 
organize people online in an effective manner. In particular, in 
recent years, there has been rapid growth in research investigating 
how to build systems that leverage human effort for tasks that are 
too difficult for computers to do today.  

Some research has examined specific domains, for example using 
games for image labeling tasks [1] or tagging shared documents 
[11][24]. Other research has investigated how to improve people’s 
contribution to a group, for example by assigning work to users in 
a way that makes the user believe their work is uniquely matched 
to his or her capabilities [16]. SuggestBot generated suggestions 
for articles to edit in Wikipedia based on machine learning 
techniques, to increase participation [2].  

Our work with Aquarium does not examine motivation. Instead, 
our work looks at how to improve the wisdom of crowds for a 
computer security task, to improve the results of human effort by 
applying computational techniques. Our work focuses on effective 
use of participants rather than increasing participation, by 
applying computational techniques such as clustering and vote 
weight. 

There have also been several papers that have either used or have 
examined the use of Mechanical Turk for user studies. For 
example, Heer and Bostock [12] showed that MTurk was effective 
for crowdsourcing evaluations of visualizations. Kittur et al [18] 
used MTurk to collect ratings on the quality of Wikipedia articles, 
and offered guidelines for improving worker performance. Mason 
and Watts [22] investigated the effects of compensation for simple 
tasks, finding that increasing compensation increased the quantity 
of responses but not quality. Ipeirotis [15] examined the 
distribution of compensation for tasks, completion rates of tasks 
on different days, and the distribution of time to complete tasks. 
Relevant to our work here, Ipeirotis found that the distribution of 
completion times follows a power-law, where most tasks are 
finished quickly but a few tasks take very long. Partly for this 
reason, in our experiment we posted new tasks every day. Our 
work in this paper looks at how to apply crowdsourcing 
techniques to a security task, in this case, phishing.  

3. IMPROVING HUMAN EFFORT WITH 
COMPUTATIONAL TECHNIQUES 
3.1 Improving Human Effort 
Here, we outline a design space for improving human effort in 
phish identification. This design space is not comprehensive, but 
rather sketches out some of the opportunities at hand. 

One area for improvement is modifying the order in which 
suspicious URLs are shown to participants. For example, one 
could show a submission that is closest to completion, newest 
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submissions, oldest submissions, or even random. One could also 
tailor what phish a participants sees based on their presumed 
knowledge of that brand or past votes. PhishTank’s ordering has 
not been formally published; however, it does not seem to be by 
recency only. With Aquarium, we order submissions first by 
closest to completion and then by newest. 

Another area for improvement is modifying how submissions are 
shown, for example showing them one-by-one or showing similar 
submissions together. In Aquarium, we compare the effectiveness 
of both of these approaches. We believe showing groups of 
suspicious URLs should help in two ways. First, one can apply a 
vote to multiple suspicious URLs simultaneously rather than 
going through them individually, mitigating the effect of attackers 
trying to overwhelm the people verifying these phishing sites. 
Second, for unfamiliar brands, seeing multiple copies of the same 
page, each of which have unusual URLs, can help participants in 
inferring whether or not the cluster is a phish.  

A third possible intervention is to adjust the threshold for when a 
submission is labeled. PhishTank’s threshold has not been 
formally published, but appears to require at least 4 votes 
minimum and at least 70% agreement between voters (with some 
votes weighted more than others). One could imagine many 
variants of this, including for example changing the minimum 
number of votes, changing the level of agreement needed (e.g. 
from 70% to 80%), changing how votes are weighted, and even 
having an automated algorithm provide a vote. Changing this 
threshold could affect accuracy, the time it takes to successfully 
label a submission, and breadth of coverage. In this paper, we 
experimented with changing how participants’ votes are weighted. 

A fourth kind of intervention is to find better ways of motivating 
people to submit more votes or more accurate votes. As we noted 
in the related work section, there have been several papers looking 
at how to motivate people to contribute more work and higher-
quality work. In the domain of phishing, some possibilities 
include showing specific brands to people who either care a lot or 
know a lot about that brand, having competitions, organizing 
people into teams of voters with specific goals, and virtual 
rewards such as achievements or leaderboards. We do not 
investigate these issues in this current paper, and instead use 
MTurk’s payment system. 

3.2 Aquarium System Architecture 
Our system architecture is shown in Figure 1. We first crawl the 
web pages of URLs submitted to PhishTank that have not yet been 
verified as phish. These URLs may or may not have any votes on 
them. PhishTank’s API and web page do not show how many 
people have voted on unverified URLs. We submit these URLs as 
tasks to Amazon’s Mechanical Turk, where qualified participants 
are paid to label them as phish or legitimate. Aquarium then 
clusters web pages by similarity before they are presented to users. 
We currently use DBSCAN and shingling, a common algorithm 
often used by search engines for detecting duplicate pages. To be 
qualified on Mechanical Turk, we required participants to achieve 
a certain score on the Anti-Phishing Phil micro game [31]. As 
participants cast votes, we weight those votes based on their 
history of votes. 

In the first step, we collect URLs submitted to PhishTank as our 
test dataset. We use a small whitelist to filter legitimate web pages, 
to reduce effort by users. In February 2011, we collected 2,784 

domains to whitelist from Google safe browsing [13] and 424 
from millersmiles [14]. In our past research, we found that this 
combination of whitelist works reasonably well with minimal 
false positives [37][39]. 

Next, our system clusters similar phish together. We set the 
shingling similarity threshold to 0.65, a figure that worked well in 
our past work [39]. To demonstrate the potential of clustering, 
using all of the data crawled from PhishTank, we found 3,180 out 
of 3,973 web pages could be grouped into 392 clusters, with 
cluster size ranging from 2 to 153 URLs. Note that these clusters 
do not take into account time. For Aquarium, we cluster similar 
URLs currently available at that time. We also made the 
maximum size of clusters 25, high enough that clusters would be 
useful but low enough so that mistakes (or malicious votes) would 
have limited damage. The distribution of clusters after capping at 
25 is shown in Figure 2. 

Submissions are then submitted to Amazon’s Mechanical Turk 
(MTurk) system as Human Intelligence Tasks (HITs) for 
verification. We submit two kinds of HITs. The first lets 
participants verify submissions one-by-one. The second one lets 
participants verify clusters of phish (see Figure 3). Participants 
saw a given URL at most once regardless of HIT condition. 

Ideally, as participants vote on submissions, we can apply our 
voteweight model to modify the impact of a user’s vote. Currently, 
we do not do this, and in this paper only examined the effects of 
voteweight after the fact. In the voteweight model, we consider 
two factors, namely a user’s performance on verification and the 
time when a user casts a vote. Briefly, people who vote early and 
have a high accuracy in voting correctly are weighted more. We 
factor in time because an old vote does not tell us as much about a 
user’s current performance as a more recent vote. The exact 
formula used is described in Section 6.1.  

 

Figure 1. System architecture for Aquarium. We first crawl 
unverified URLs from PhishTank and check them against a 
whitelist. We download the web pages of URLs not on the 
whitelist. We use DBSCAN and shingling to cluster similar 
pages. We submit these clusters to Amazon’s Mechanical Turk 
for verification by participants. Finally, each participant’s 
vote weight is adjusted based on past performance. 
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(a)  

(b)  
Figure 2. The distribution of clusters in our time-based 
approach to grouping. The top figure (a) shows that there are 
many small clusters of size 2 which quickly tail off. The 
bottom (b) shows the total number of URLs in different size of 
clusters. For example, we have 28 clusters of size 25, meaning 
that these clusters represent 28 x 25 = 700 URLs.  

 
Figure 3. A sample task on Aquarium. Users can see the URL 
and screenshot of a suspicious web page and then label it as 
phish, not phish, or don’t know. Users in the Cluster Condition 
(as shown above) could see up to 25 similar sites all at once. 
Participants in the Cluster Condition could “mark all as 
phish” or “mark all as not phish.” 

Like PhishTank, Aquarium requires a minimum of 4 votes. If the 
majority of votes for that URL identify it as phish, then we label 
that URL as phish (this mimics PhishTank’s threshold of 70% 
with 4 votes). The same is true with legitimate URLs. However, if 
a URL has equal votes both for phish and legitimate, we label it as 
unidentified. In the Control Condition, there were 153 URLs 
(3.9%) not labeled due to tie votes. In the Cluster Condition, there 
were 127 (3.2%). Unlike PhishTank, we do not continue to gather 
more votes from people. This is primarily due to limitations with 
MTurk, which make it very difficult to have a variable number of 
workers per HIT. Although this does place caveats on our results, 
we argue that our results are very strong and should still 
generalize despite this weakness. 

3.3 Measuring Page Similarity with Shingling 
To cluster effectively, we need a way of measuring similarity. We 
could easily do exact page comparisons or use hash functions. 
Given that many phishing web pages are created using toolkits, 
this simple approach should work reasonably well today. In fact, 
in our early evaluations, we found that hash codes worked 
reasonably well for clustering. However, exact matching is very 
brittle, in that changing a single byte would lead to a non-match.  

As such, we opted to use an approximate matching algorithm. 
Shingling is a popular page duplication algorithm invented for 
search engines. The core idea behind shingling is to break up web 
pages into n-grams and then compare how many n-grams two 
pages have in common. Here, n-grams are a term from natural 
language processing, and are subsequences of n contiguous tokens 
from the text. For example, sample text “shop without exposing 
your financial information” has the following 3-grams: {shop 
without exposing, without exposing your, exposing your financial, 
your financial information}.  

Shingling employs a metric called resemblance to calculate the 
percent of common n-grams between two web pages. Let S (p) 
denote the set of unique n-grams in page p and the similarity 
metric resemblance r(q, d) for pages q and d is then defined as: 

     
   dSqS

dSqS
dqr




,  (1)

This approximate matching approach first breaks each page into a 
set of unique n-grams, and saves them in memory to speedup 
runtime performance. After excluding good pages whose domains 
appear in the whitelist, we compute resemblance r(q, d) for a 
query page q, and fire an alarm whenever r(q, d) exceeds a 
threshold t. We used the same threshold as in our past work [39], 
namely 0.65. The average time cost of calculating similarity of 
two web pages on a laptop with 2GHz dual core CPU with 1 GB 
of RAM is 0.063 microseconds (SD=0.05). 

3.4 Clustering Algorithm 
Shingling is only a page similarity algorithm, so we still need a 
way of clustering similar pages together. In Aquarium, we used 
the well-known density-based DBSCAN algorithm. We chose this 
clustering method for two reasons. First, it can select any data 
point as the start point for clustering. Second, the algorithm only 
needs one scan of the database to finish clustering. The concepts 
used in our approach are described as follows: 

 



6 

 

Eps: Minimum similarity of the neighborhood of the cluster. 

MinPts: Minimum number of points in an Eps-neighborhood of 
that point. 

core point (CO): Point is in the interior of a density-based cluster.  

border point: A border point is not a core point, but falls within 
the neighborhood of a core point. 

directly-density-reachable (DDR): If point x is CO, point y is in 
x’s Eps-neighborhood. 

density-reachable: There exists a chain of DDR objects from 
point x to point y. 

Based on the above, we present the clustering method as follows: 
1) Given a submission P, quantify the similarity from P to each 
submission in the set through shingling.  

2) Select P as the start point and retrieve all points density-
reachable from P with respect to Eps and MinPts. 

3) If P is a core point, a cluster is formed.  

4) If P is a border point, no points are density-reachable from P 
and DBSCAN visits the next submission. 

5) Continue until all of submissions have been processed. 

We tested on our data with different values of Eps from 0.6 to 1 
by steps of 0.5 and MinPts of 2. With Eps at 0.60, the accuracy is 
98.8% (we visually scanned all of the generated clusters). 
However, accuracy was 100% with Eps from 0.65 to 1. Hence, for 
our clustering, we chose Eps=0.65 and MinPts=2. The time cost of 
clustering over all 3,973 pages collected was about 1 second. 

3.5 Incremental Update of the Data 
Since there is a stream of suspicious URLs, the clusters discovered 
by our method need to be periodically updated. Clustering can be 
expensive in terms of time. However, it is not necessary to re-
cluster the whole database each time. We use following method to 
assign a new URL to a cluster. We first compare the content 
similarity of each new submission with those of the dataset.  

 If there is no similar web page, we create a new cluster for 
the new submission. 

 If the similarity is above the given threshold and all similar 
web pages are in the same cluster, we assign the new 
submission to this cluster (unless the cluster is at its 
maximum size). 

 If there are many similar webpapes in different clusters, we 
choose the largest cluster that is not at its maximum size. 

When a new submission is grouped in a cluster, it has zero votes 
and does not inherit the votes of any other submissions in the 
same cluster. It is simply presented with other available similar 
submissions of the cluster for verification. 

4. ONLINE PHISH-LABELING 
EXPERIMENT 
We conducted an experiment to evaluate the effectiveness of our 
ideas. More specifically, we wanted to (a) assess how well 
clustering worked versus labeling each submission individually, (b) 
determine the effectiveness of various approaches for weighting 
votes, and (c) compare the effectiveness of Aquarium to existing 
blacklists in terms of time, accuracy, and coverage. 

In an early pilot test of this work before clustering was 
implemented, we found that people often did not know certain 
brands and had a hard time labeling a site as phish or legitimate 
the first time they saw that brand. However, we also saw that 
people realized a site was phish after seeing the same site for the 
third or fourth time. Furthermore, we saw a large number of 
visually duplicate sites in our pool of URLs. This insight led us to 
add clustering as a possible way of improving accuracy as well as 
reducing time and overall effort. 

4.1 Gathering Data with Mechanical Turk 
Since PhishTank does not make its raw voting data easily 
available, and since we could not directly modify the PhishTank 
site, we created Aquarium to mimic the functionality of 
PhishTank. We used PhishTank’s API to sample live data from 
the stream of sites being submitted. We then submitted both 
individual submissions as well as clusters of submissions as 
Human Intelligence Tasks (HITs) to Amazon’s Mechanical Turk 
(MTurk), an online service designed to allow work requesters to 
quickly hire web-based workers by posting tasks for a set price. 
Workers were paid $0.01 for each HIT.  

Normally, having MTurkers simply label data does not require an 
IRB at our university. However, since we had designed an 
intervention which was the subject of an experiment, we 
submitted an IRB, which was approved as a minimal risk study. 

To compare Aquarium with PhishTank, we first collected 
unverified URLs submitted to PhishTank from Jan. 1, 2011 to Jan. 
14, 2011. Unverified URLs are those that do not have enough 
votes to be verified as legitimate or phish. We also captured a 
screenshot of each submission when they were alive. We replayed 
this data as HITs over a different period of 14 days from Feb. 11 
to Feb. 24 and mapped them to the submissions we downloaded 
from PhishTank from Jan. 1 to Jan. 14. Tasks were presented to 
users for verification only after the same time corresponding to 
when they were previously submitted to PhishTank. For example, 
suppose a suspicious URL was submitted to PhishTank at 2:51 am, 
Jan. 3, 2011. In our study, the task of such URL could be viewed 
by our participants only after 2:51 am, Feb. 13, 2011. 

The Control Condition and the Cluster Condition were listed as 
separate HITs. Both conditions had the same exact data. 
Participants could move back and forth between the conditions. 
However, a participant only saw a given URL at most once. We 
chose this experimental design primarily because Mechanical 
Turk offers no facilities for enforcing between-subjects designs. 
Furthermore, we felt that there would be minimal learning effects 
if people switched between conditions.  

To avoid having few votes at the beginning of the HIT and too 
many rushed votes at the end (which we saw in an earlier iteration 
of the experiment), we added a new HIT each day rather than 
having a single HIT last two weeks.  

Since our task is one of identifying intentionally misleading 
websites, sites which criminals have deliberately built to deceive, 
we required our participants to complete a short training task 
using the first two rounds of Anti-Phishing Phil, which has been 
shown to increase phishing recognition in those who play it [31].  

Though our model site, PhishTank, does not explicitly train users, 
we assume that users who participate there are more likely to be 
familiar with how to identify phish than our users recruited 
through MTurk, because of the selection bias of a volunteer opting 
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to donate time to participate. We also chose to train users to 
decrease the likelihood of low identification performance that 
lower participation users exhibit on PhishTank [26]. Once users 
completed both rounds of Anti-Phishing Phil, they were then 
eligible to complete our HITs. Participants who completed the 
game spent an average of 5.2 minutes (SD=6.5 minutes).  

4.2 Task Design for Mechanical Turk 
Figure 3 shows the Aquarium user interface that was presented to 
MTurk users. Our interface was modeled to be functionally 
similar to PhishTank’s site, with the primary difference being that 
our interface did not display any voting progress indicators, unlike 
PhishTank which displays a breakdown of the voting percentages 
after a user has voted.  

To complete a HIT, a participant only has to click “Phish”, “Not 
Phish”, or “Don’t Know”. In the Cluster Condition, participants 
can also select “Mark All as Phish” and “Mark All as Not Phish.” 

We sampled data from the PhishTank site on an ongoing basis, 
extracting newly-submitted potential phish, typically within 
minutes of being submitted to PhishTank. We crawled new 
submissions using an automated tool that we created that collects 
a screenshot as well as the raw content used in an actual browser 
rendering the suspicious site. This process was run in a virtual 
machine to protect against any content or malware attacks, and 
virtual machines were reset to a clean state approximately every 
10 minutes. This data collection process allowed us to protect our 
participants from any possible malware, as well as provide a more 
uniform experience robust to some kinds of fast flux where 
phishing sites temporarily shut themselves down to interfere with 
detection (which we attempt to overcome by regularly re-checking 
sites which were previously down), network problems, or 
differences between participants’ browsers and security settings. 

The raw content extracted from each site by our tools represents 
all of the data that is required by a web browser to render the web 
page, including the final internal document representation that is 
used to render the web page on a normal user’s screen, and is the 
content upon which we cluster submissions. 

Once we had all the information for a submitted site, we added it 
to our live study site, where users were given tasks based on (a) 
closest to 4 minimum votes, and then (b) newest submission.  

5. RESULTS OF EXPERIMENT  
In this section we present the results of our study.  

5.1 Summary of Participation Data 
During the 2 weeks of this study, we had 267 users visit Aquarium, 
with 239 users participating. Of these 239, 174 cast votes in both 
conditions (as stated earlier, participants only saw a given URL at 
most once), 26 in the Control Condition only, and 39 users in the 
Cluster Condition only.  

A total of 33,781 votes were placed, with 16,308 in the Control 
Condition, and 11,463 votes on clusters (yielding an equivalent of 
17,473 votes on URLs without clustering) in the Cluster Condition. 
We paid $ 277.71 for the users for completed and approved HITs, 
and $198.96 to Amazon for approved HITs and bonus rewards, 
yielding a total cost of $476.67. 

Because we only presented tasks to our participants if we were 
able to generate a thumbnail and download the site’s content, our 
feed of submitted phish was not as large as PhishTank’s, having 

3,973 of the 5,686 submissions available from PhishTank. There 
were 1,713 submissions not used in the experiment since we could 
not obtain their screenshots.  

We compared our results to four different resources. The first is 
the label from PhishTank identifying it as phish or not phish. We 
periodically checked the status of a given URL on PhishTank. If 
PhishTank updated their information, we would update our 
database accordingly. The second is the Google Safe Browsing 
API, which checks a given URL against their blacklist. We 
periodically checked the status of given URL using this API. The 
third is the SmartScreen Filter used by Microsoft Internet Explorer. 
We created a program that instantiated the MSIE browser in a 
virtual machine, visited the suspicious URL, and then analyzed 
the response of the IE browser to verify whether it is phishing or 
not. Fourth, when we could not obtain the status of a suspicious 
URL from above methods, we manually checked it. We use a 
queue to store the unverified URLs and repeatedly checked them 
following FCFS (First Come First Served) service discipline until 
they are verified. At worst, these URLs are checked every 10 
minutes. We manually checked those URLs unverified by the first 
three methods during a given time (i.e. two weeks). In our study, 
we only manually checked 137 URLs, the majority of which were 
checking sites labeled as not phish. We also did not see any 
disagreement in the blacklists during the study period. 

Using the above methods, we identified 3,877 as phishing URLs 
and 96 as not phish. Table 2 shows the comparison of PhishTank, 
Google Safe Browsing, and Microsoft’s SmartScreen Filter during 
the study period. There are large differences between the average 
time and median time phish were reported, due to a power law 
distribution, which has also been reported in past work [26].  

Also note that our reported coverage rates are different than from 
those in our past work [32]. This is primarily due to our source of 
phish, which is drawn from PhishTank rather than the UAB feed 
which is more comprehensive and has fresher phish. These 
previous results should still be considered more representative of 
blacklist behavior. Our results here should be viewed as a relative 
comparison of anti-phishing techniques on a sample of phishing 
attacks, rather than an absolute comparison. 

Tables 3 and 4 show the results of our two conditions. In Table 3, 
the first row “All Votes in Control Condition” shows the TP and 
FP of all 16,308 votes cast in that condition. Note that we saw a 
FP rate of 2.6%, which is fairly high. The second row “All 
Labeled URLs in Control Condition” shows the results of our 
labels when compared to our four resources (i.e. PhishTank, 
Google Safe Browsing, Microsoft’s SmartScreen Filter, and 
manual checks). Note that the labels for URLs have a reasonably 
good TP rate (94.8%), which is higher than individual votes 
(83.0%). Aggregating people’s votes also led to 0% FP in our 
experiment. We saw no systematic errors in false positive votes. 

The third row of Table 3, “All Votes on Clusters in the Cluster 
Condition”, shows the TP and FP of all 11,463 votes on clusters. 
The fourth row, “All Labeled URLs in Cluster Condition”, shows 
a comparable TP and FP rate to the Control Condition.  

Table 4 shows Aquarium’s performance with respect to coverage 
and time. Here, Aquarium does quite well compared to PhishTank, 
Google, and Microsoft. The coverage rate of our Control and 
Cluster Conditions (96.1% and 96.8% respectively) is higher than 
the other blacklists (89.2%, 65.7%, and 40.4%). However, it 
should be noted that our recorded coverage rates for PhishTank, 
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Google, and Microsoft do not take into account phishing pages 
that are taken down, since these blacklists may not bother labeling 
a phish that no longer exists.  

To a large extent, this problem of not labeling a page that no 
longer exists would be less of a problem if blacklists could label 
pages faster, which would also provide better protection for 
people in the first few hours of an attack when people are most 
vulnerable [19]. Table 4 shows the average and median time to 
label a page in our two conditions. In particular, the clustered 
condition offers the best average time (1.8 hours, SD=2.6 hours) 
as well as median time (0.7 hours), outperforming all other 
blacklists by a wide margin. 

5.2 Individual Human Accuracy 
Earlier, we had hypothesized that clustering could help people 
identify phish better. For example, a given participant might not 
recognize a single instance of phish on an unknown brand (for 
example, a single instance of the Tibia phish shown in Figure 4), 
but seeing four instances of the same site but with different URLs 
would suggest that it is suspicious.  

We calculated each individual’s accuracy (true positives plus true 
negatives over all votes) based on votes in both conditions. 
Individual performance varied, with a mean accuracy of 82.7% 
(SD=23.3) in the Control Condition, and a mean accuracy of 
86.7% (SD=18.5) in the Cluster Condition. In our experiment, 174 
of these 239 users cast votes in both conditions. We compared 
their performance between two conditions using a paired t-test 
with one-tailed distribution. There was a statistically significant 
effect for clustering, t(173)=2.78, p<0.05 (p=0.006), with users’ 
performance in the Cluster Condition obtaining higher accuracy 
than that in Control Condition. As such, our results support our 
hypothesis that clustering helps people identify phish better. We 
also examined if the size of a cluster helped with accuracy. There 
was marginal improvement, but not statistically significant.  

Figure 5 shows the overall performance of all participants sorted 
by performance and organized into deciles. The top 50% of 
participants performed very well in both conditions. However, 
there is a large dropoff in performance in the Control Condition, 
with the bottom 10% of MTurkers in the Control Condition 
performing under 30%. We suspect this is due to lazy workers.  

5.3 Reducing Effort Using Task Clustering 
To determine if the Cluster Condition is more effective in 
determining if a submission is a phishing attack, we looked for a 
difference in the performance of users in evaluating submissions. 
Time to label is an important metric here, as it measures both how 
quickly a user was able to identify an attack, and is a coarse 
representation of the effort required to complete the task.  

Participants in the Control Condition took 11.8 (SD=22.6) hours 
on average to label a site, whereas participants in the Cluster 
Condition took 1.8 (SD=2.6) hours. By comparing two conditions 
with one-tailed paired t-Test, there was a significant main effect 
on clustering, t=23.63, p<0.001, with much less time used in 
identifying a URL in Cluster Condition than that in Control 
Condition. Comparing median times (3.8 hours to 0.7 hours) 
yields a similar result. 

 
Figure 4. Four phishing examples from a cluster collected 
during our study. In this case, all 42 submissions in the cluster 
were nearly or completely visually identical. In this case, it 

 Coverage 
Rate 

Avg Time 
(hours) 

Median Time 
(hours) 

PhishTank 
89.2% 

16.4 
(SD=25.3) 

     3.98 

Google  
Safe Browsing 

65.7% 
10.1 

(SD=10.1) 
     8.47 

SmartScreen 
Filter of MSIE 

40.4% 
24.5 

(SD=24.0) 
   15.01 

Table 2. Comparison of the coverage and time of 3973 
URLs among PhishTank, Google Safe Browsing, and 
Microsoft’s SmartScreen Filter. Given past work in this 
area, we assume that the false positive rate of Google and 
Microsoft are 0%.  

 TP FP 

All Votes in  
Control Condition 

83.0% 2.6% 

All Labeled URLs in  
Control Condition 

94.8% 0.0% 

All Votes on Clusters in  
Cluster Condition 

89.4% 0.05% 

All Labeled URLs in  
Cluster Condition 

95.4% 0.0% 

Table 3. Comparison of True Positives and False 
Positives of all votes in the two conditions, as well as all 
labeled URLs based on those votes. The TP of votes from 
the Control Condition to the Cluster Condition improved by 
6.4%, which was statistically significant (p=0.026). There 
were no other differences, however.  

 Coverage 
Rate 

Avg Time 
(hours) 

Median Time 
(hours) 

All Labeled URLs 
in Control Condition 

96.1% 
11.8 

(SD= 22.6) 
3.8 

All Labeled URLs 
in Cluster Condition 

96.8% 
1.8 

(SD=2.6) 
0.7 

Table 4. Comparison of URLs labeled in the two 
conditions. Due to tie votes, there are 96.1% URLs 
labeled in the Control Condition and 96.8% URLs in the 
Cluster Condition. FP was reduced to zero in both 
conditions.  
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should not be hard to identify the phishing attack, as the sites 
are identical, but do not share the same primary domain name. 

 
Figure 5. Average accuracy for each decile of users, sorted by 
accuracy. For example, the average accuracy of the top 10% 
of users in both conditions was 100%, whereas the average 
accuracy of the bottom 10% was under 30% for the Control 
Condition and under 50% in the Cluster Condition. 

6. INVESTIGATING VOTE WEIGHT 
In this section, we present our analysis and tuning of vote weight.  

6.1 Voteweight 
The core idea behind voteweight is that participants who are more 
helpful in terms of time and accuracy are weighted more than 
other participants. Weighting votes more accurately should also 
help reduce the time it takes to label a submission. Our notion of 
voteweight is similar to the concept of mavens in the Acumen 
system [10], though we examine a different domain (phishing vs 
cookies) and leverage time in our model. Our voteweights are also 
continuous, whereas mavens were chosen to be the top 20% of 
users in Acumen. 

Intuitively, a correct vote should be rewarded and a wrong one 
should be penalized. In addition, recent behavior should be 
weighted more than past behavior, as it gives us a better sense as 
to a participant’s current abilities (or level of malice).  

Towards this end, we propose a metric called voteweight in Eq.(2) 
that combines these factors in one summary statistic. In our model, 
we use y∈{t,+∞}∪ y∈{-t,-∞} to label the status of a URL, 
where y is the sum of voteweight of a given URL, t is the 
threshold of voteweight, and y≥ t means a URL has been voted as 
a phishing URL and y≤-t means voted as legitimate.  
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Here, v’
i is the normalized voteweight of user i, with a value 

between [0, 1]. This value will be the voteweight that we use for 
the user. vi is the raw voteweight, and M is the number of users. 
Note that because our normalized value is less than 1 we also have 
to adjust our threshold accordingly.  
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Equations 2 and 3 show the formulas for raw voteweight (RV). 
Conceptually, raw voteweight for a user i is the sum of the 
rewards for correct votes Ri, minus a weighting parameter  times 
the penalization for incorrect votes Pi. Adjusting the parameter  
allows us to weight the penalty relative to the reward. For example, 
an  value greater than 1 means that participants are penalized 
more heavily for wrong votes than they are rewarded for correct 
votes. 
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Equations 5 and 6 show our reward and penalty formulas. The 
first part of both equations 5 and 6 show the weight we give to 
time. Here, T0 is the timestamp of user i’s first vote ever; Tj is the 
timestamp of user i’s vote on phish candidate j; and T is the 
current time when computing user i’s voteweight based on the 
historical vote information. Thus, if Tj is recent and close to 
current time T, then this first part is close to 1. If Tj is very old, 
then the first part becomes smaller, meaning that older votes have 
less weight. In our study, we calculated the interval of time in 
hours. 

There are alternative variations for weighting time that also could 
have worked, for example, having a sliding window of the last N 
days of votes, taking only the last N votes, and so on. We wanted 
to explore how well any voteweight feature worked first before 
trying the many alternatives. As such, we chose one that worked 
well with the two weeks of data we had. 

The right half of equations 5 and 6 are an indicator function with a 
value of 0 or 1. Essentially, for the reward formula, we want the 
indicator to be 1 if they voted correctly and 0 otherwise. For the 
penalty formula, the opposite is true. More formally, Cij is the 
label that user i assigns to phish candidate j; Lj is the ground truth 
label for phish candidate j; N is the number of phish candidates 
that user i has voted on; IA(x) is an indicator function in 
mathematics which is defined as: 

 








Axif

Axif
xI A 0

1
                                                  (7) 

With our voteweight, we can determine the label for a candidate 
phish based on users’ vote by 
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where the label of phish candidate t is a weighted average of the 
votes by K users and the value of a vote is defined as 
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6.2 Tuning the Voteweight Parameters 
In this experiment, we tuned the parameter required in Eq. (4) to 
optimize the accuracy rate and time cost in labeling URLs.  
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We tested on 16,308 votes from the Control Condition on 3,973 
URLs, and 11,463 votes on clusters from the Cluster Condition on 
3,973 URLs using different values of  ranging from 0.5 to 9 in 
increments of 0.5. Again, a higher  here means that incorrect 
votes incur a higher penalty relative to the reward. We calculated 
the accuracy and time cost when a URL was identified based on 
different values of voteweight.  

We also tested the threshold of voteweight from 0.01 to 1 by steps 
of 0.01. Figure 6 only shows the results under the threshold from 
0.01 to 0.20, since there was no improvement above 0.20. Again, 
our label for a URL was determined based on the voteweight it 
obtained beyond the threshold. For this tuning, we recalculated 
voteweight after each hour. 

Figure 6 shows our results for both the Control Condition and 
Cluster Condition. Figure 6a shows how accuracy varies as the 
value of  increases. Accuracy increases incrementally for a while 
and then plummets dramatically when  approaches 4.5 regardless 
of the threshold. This finding suggests that an appropriate penalty 
can offer a small benefit in terms of distinguishing between skilled 
and unskilled participants. However, excessive punishment on 
occasional errors of users dramatically decreases performance. 
Figure 6b shows that as the threshold t is increased, the time cost 
of identifying a URL also increases, as one might expect.  

Overall, in the Control Condition, voteweight obtained its highest 
accuracy (true positives and true negatives over all votes) of 
95.6% when the threshold of t is 0.08 and  is 2.5. At these values, 
the average time cost was 11.0 hours and median time cost 2.3 

hours.  

Given this tuning, how much improvement does voteweight offer 
over not having it? In the Control Condition (without voteweight), 
Table 3 shows that the true positive rate was 94.8% and false 
positive rate was 0%, with an average time cost of 11.8 hours 
(SD= 22.6) and a median of 3.8 hours. By using voteweight, we 
can achieve a comparable accuracy, and reduce the average time 
by 0.8 hours and reduce the median time by 1.5 hours. 

In the Cluster Condition, we obtain the highest accuracy rate at 
97.2% when threshold t is 0.06 and  is 1. With this accuracy rate, 
the average time is 0.8 hours and median time is 0.5 hours. In the 
Cluster Condition without voteweight, the true positive rate is 
95.4%, with an average time of 1.8 hours (SD=2.6) and median 
time of 0.7 hours. By using voteweight, we can reduce the average 
time cost by about 1 hour and reduce the median time cost by 
about 0.2 hours, while achieving comparable accuracy.  

7. DISCUSSION 
Overall, our results with Aquarium are quite positive. Clustering 
alone achieves a true positive rate of 95.4%, with an average time 
of 1.8 (SD=2.6) hours and a median time of 0.7 hours. Applying 
voteweight without clustering also yielded stronger results, 
reducing the average time by 0.8 hours and the median time by 
1.5 hours. Combining these two techniques yielded the best results. 
Our total cost for both conditions was under $500 to compensate 
239 participants. 

As noted earlier, one limitation of this study is that 153 URLs 
(3.9%) in the Control Condition and 127 (3.2%) in the Cluster 

(a) Control: Accuracy under various t thresholds 

(b) Control: Average time cost under various t thresholds 

(c) Cluster: Accuracy Rate under various t thresholds 

(d) Cluster: Average time cost under various t thresholds 

Figure 6. Voteweight parameter tuning in the Control and Cluster Conditions. t is the threshold of votepower,  is the weight of 
penalty for wrong verification of URLs. As  increases, the accuracy first increases a little and then drops down quickly while the 
average time cost increases in a small range. When t increases, the average time cost increases accordingly. Voteweight achieves its 
best accuracy with t=0.08 and =2.5 in the Control Condition and t=0.06 and =1 in the Cluster Condition. 



11 

 

Condition were not identified due to tie votes. It is possible that 
these were the most difficult URLs to verify and could lead to 
longer tails for time or lower accuracy rates. However, we would 
also argue that the results that we do have are quite strong and still 
represent an advance over current manual verification as well as 
many published algorithms.  

Another limitation of this study was imposed by Mechanical Turk 
itself. We have discussed two of these in the paper already, 
including the challenges in running a strict between-subjects study 
on MTurk, and dynamically adding more participants to URLs if 
there is not strong agreement. 

A third limitation of this study is that there are possible learning 
effects, since both conditions were run simultaneously and that 
some people were in both conditions. Given the limitations of our 
collected data, it will be difficult to tease out whether there were 
learning effects involved. What we can say, though, is that 
Aquarium does not offer feedback as to whether a vote is correct 
or not, minimizing one potential angle for learning. Furthermore, 
all participants had to train on Anti-Phishing Phil, helping to level 
the playing field. Lastly, we do not prioritize one condition over 
another, so neither condition should have any substantial benefits 
if there are learning effects. 

Based on their study on PhishTank [26], Moore and Clayton 
offered three lessons for improving crowdsourcing for security: (1) 
addressing power-law issues of participation, (2) having 
crowdsourced decisions be hard to guess, and (3) not having users 
work harder than necessary. We addressed the third issue in this 
paper, and so only discuss the first two issues below. 

For the first issue, we do not address power-law issues of 
participation directly. Ipeirotis also showed that task completion 
times follow power-law distributions on MTurk [15]. What we 
have demonstrated, however, is that recruiting workers on MTurk 
can be a reasonably good approximation of PhishTank, as 
evidenced by Aquarium’s coverage rates and median times in the 
Control Condition, which are comparable to PhishTank’s. Here, 
Aquarium does slightly better than PhishTank, possibly due to a 
combination of training with Anti-Phishing Phil and the number of 
workers available on MTurk and their timeliness.  

For the second issue, having crowdsourced decisions be hard to 
guess, there is a lot of room for improvement in Aquarium. We 
did not encounter workers actively trying to manipulate our 
system, unlike PhishTank. As such, we can consider this paper to 
be a study under optimistic conditions without active adversaries. 
However, previous studies have encountered the problem of lazy 
workers doing the minimum amount of work needed to be paid. 
We had a few participants that underperformed, though we believe 
that using Anti-Phishing Phil as a qualification task helped filter 
out many other workers who would have underperformed.  

A system with active adversaries would have several challenges, 
as the risk is increased with clustering and voteweight, especially 
since the prior probability of phish is quite high. There are several 
ways to counter this problem of lazy workers and active 
adversaries. One is increased randomization of what URLs are 
presented, helping to minimize the impact of a lazy worker and 
making it harder for attackers to label their own phishing site or to 
coordinate attacks. Given the large pool of workers on MTurk and 
the relatively short time it takes to identify a phish on Aquarium, 
this approach would also give attackers only a small time window 
to try to manipulate the system.  

Another countermeasure would be to calculate baseline 
performance based on known results. For example, in an earlier 
iteration of our experiment, we calculated a baseline performance 
to see if people were improving over time (they were, but 
marginally) and to verify that users were not merely always 
clicking “Phish”. We introduced a controlled stream of previously 
resolved tasks to periodically measure participant performance. 
The first 20 tasks completed by each user were selected from the 
previously-resolved cases, as well as at least 1 of every 10 
subsequent tasks, with a fixed 20% of these test cases selected 
from the “not-phish” resolution to provide a minimum of not-
phish cases a participant would experience. This periodic testing 
would allow us to estimate user performance and detect low 
performing or malicious workers. One could also tie MTurk 
bonuses to baseline performance, reducing the incentives of lazy 
workers. Such an approach could be used in a deployed system, at 
the cost of more time, money, participants, and votes. 

Other countermeasures include ones we previously identified in 
the design space, such as increasing the number of votes required 
or using existing automated phish-detection algorithms as a 
backup check or additional vote. 

8. CONCLUSION 
Purely computational approaches to detecting phish are popular in 
the research community, but have not seen adoption primarily due 
to concerns about false positives. In contrast, manual verification 
is the norm today, but has potentially long lag times and do not 
scale well.  

In this paper, we presented the design and evaluation of Aquarium, 
a system that uses computational techniques to improve 
crowdsourcing in identifying phish. Specifically, we outlined the 
design space of techniques for improving the wisdom of crowds, 
investigated the use of clustering and weighting of votes, and 
presented the results of our evaluation. Through a two-week study 
replaying submissions on PhishTank, and using minimally trained 
participants from Amazon’s Mechanical Turk, we demonstrated 
that clustering and weighting of votes can be very effective in 
terms of accuracy, time, and monetary cost.  

Our work in this paper represents two points in the design space 
for improving the wisdom of crowds for phishing. Our ideas can 
be easily adopted by existing manually-verified blacklists such as 
those operated by Google, Microsoft, and PhishTank. Other 
applications include forensic analysis of phishing trends and 
maintaining databases of phishing attacks. Our work also 
represents one way of using crowdsourcing techniques for 
computer security, which may be a useful approach for other 
kinds of computer security problems that require a human in the 
loop. 
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