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ABSTRACT
Many major online platforms such as Facebook, Google, and
Twitter, provide an open Application Programming Inter-
face which allows third party applications to access user re-
sources. The Open Authorization protocol (OAuth) was in-
troduced as a secure and efficient method for authorizing
third party applications without releasing a user’s access
credentials. However, OAuth implementations don’t provide
the necessary fine-grained access control, nor any recommen-
dations vis-a-vis which access control decisions are most ap-
propriate. We propose an extension to the OAuth 2.0 autho-
rization that enables the provisioning of fine-grained autho-
rization recommendations to users when granting permis-
sions to third party applications. We propose a mechanism
that computes permission ratings based on a multi-criteria
recommendation model which utilizes previous user deci-
sions, and application requests to enhance the privacy of the
overall site’s user population. We implemented our proposed
OAuth extension as a browser extension that allows users to
easily configure their privacy settings at application instal-
lation time, provides recommendations on requested privacy
attributes, and collects data regarding user decisions. Ex-
periments on the collected data indicate that the proposed
framework efficiently enhanced the user awareness and pri-
vacy related to third party application authorizations.

Categories and Subject Descriptors
H.4 [Computers and Society]: Public Policy Issues; D.2.8.
[Management of Computing and Information Sys-
tems]: System Management

General Terms
Security, Experimentation
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1. INTRODUCTION
Open standards and third party software development

have long formed a partnership that affords internet users
the tools and capabilities to better manage their own iden-
tity, privacy, and confidentiality. Seeing a need for users to
better know the privacy policies in force for various web-
sites led the World Wide Web Consortium (W3C) to create
an open specification titled the Platform for Privacy Pref-
erences (P3P) and the corresponding Preference Exchange
Language (APPEL) which is in-use today by various inter-
net websites to provide, in machine readable format, a policy
file specifying that site’s particular privacy policies [3]. This
machine readable XML file was first available to plug-in or
addon software developed by third parties, such as AT&T’s
Privacy Bird [8] before being incorporated directly into web
browser software by such manufacturers as Microsoft (Inter-
net Explorer) and then Netscape (Navigator).

The OAuth open standard protocol is another example
of an available standard created to provide users with the
ability to share information and resources with third party
application components of other, more primary, web appli-
cations. For example, the OAuth framework might allow
for the sharing of photographs from a primary web-based
photo sharing website so that a third party photo printing
service may access the permitted photographs [5]. Popular
within online social networks, Facebook today represents the
largest single OAuth 2.0 implementation permitting a mech-
anism for third party web based applications to access Face-
book user identity and privacy information and resources.

Third-party software developers have led charges to im-
prove user privacy and security all on their own, using ex-
tensible frameworks available in the Chrome, Firefox, and
(recently) Safari web browsers. These browser extensions
protect users, for example from unwanted advertisements,
malicious software installations, and compromise of user cre-
dential data. Indeed, Joshi et al [22] showcase a browser plu-
gin that attempts to solve man-in-the-middle attacks preva-
lent in modern Phishing attacks.

While the partnering relationship between standards and
browser-based extensions is rich in history and likely to con-
tinue, there may exist one gap that needs fulfilling. Appre-
ciating that individual privacy preferences may be just that
- individual - how can a single extension reflect the privacy
preferences of a unique set of individuals? It is in this vein
that we offer our novel research in providing a recommender-
based model that enables users to make important privacy-
based decisions at the time of third party application in-
stallation. Recommendations give users confidence in mak-
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ing their decisions, especially that most privacy requests are
vague and do not clearly convey the accesses requested. The
decisions that users make are their own of course, but our
algorithm and model provides a mechanism to inform them
and provide recommendations based on the collaborative de-
cisions (grant/deny) on similar privacy requests within the
user’s larger social network.

1.1 Contributions
Our contributions in this space include:

- A browser-based extension that intercepts the default
OAuth 2.0 request flow, interprets it, and provides the
user with an easy and usable interface to make deci-
sions that provide for the protection of private identity
attributes before application installation.

- A multi-criteria recommender model approach that pro-
vides users with rating measures on requested privacy
attributes based on the collaborative effort of users
who have historically made grant/deny decisions for
similarly requested privacy attributes.

- A recommendation to extend the Open Authorization
specification to provide an avenue through which web-
browsers (through browser extensions method or oth-
erwise) might assist users in making informed decisions
regarding their full privacy attributes before the instal-
lation of a third party application.

- A user study that shows the results and effectiveness
of using our proposed browser extension.

2. PROBLEM DEFINITION
The OAuth framework provides a mechanism for third-

party service providers to request end-user resources from
an application without releasing the user’s application ac-
cess credentials to the service provider. However, specific
implementations may not provide the user with the neces-
sary fine-grain access control, and does not provide any rec-
ommendations vis-a-vis which access control decisions may
be the most appropriate.

An example we use throughout this paper is one of the
free Facebook online video and voice calling applications
available through “friendcameo.com”. 1 The FriendCameo
Facebook application requests the following extended per-
missions when a user first installs the application: access
to the user’s email address, ability to publish status and
post messages to the user’s wall, the ability to access the
Facebook chat application, and the ability to enumerate the
online presence status of other users (within the first user’s
social network).

It becomes quickly clear that several of the extended per-
missions, once granted, cannot realistically be revoked. For
example, once users provide FriendCameo access to their
email addresses, they cannot realistically remove that email
address from FriendCameo’s servers and databases by pre-
venting further access to the information through Facebook’s
application and privacy settings. We find there are several
user attributes that are practically irrevocable, once granted
since the attributes are generally immutable (i.e.: birthday)
or generally change with very little frequency (i.e.: home-
town locations, religious and political views). (See Figure 1)

1We make no value judgement of the extended permissions
requested by the example applications we present in this pa-
per and the example applications are simply that, examples.

Figure 1: 3rd party application permission request

We view the permanent loss of personal attributes as only
one part of the problem; should a method be devised to
permit users a “last line of defense” against such informa-
tion loss, how may they know best what decisions to take.
Can users benefit from a community of knowledge to better
inform their own decision making?

Our novel approach provides both the aforementioned“last
line of defense” mechanism and a recommender model based
on the decisions of all users within a system, and the pre-
vious decisions of an individual user. Later, we show how
such a model might further inform individual privacy deci-
sions through prediction.

3. PRELIMINARIES

3.1 Third Party Applications and APIs
Most of the major online platforms such as Facebook,

Google, and Twitter, provide an open API which allows
third party applications to directly interact with their plat-
form. APIs provide a mechanism to read, write, or mod-
ify user information on these platforms through other third
party applications on behalf of users themselves. An API
comes with a set of methods, each representing a certain
user interaction executed through a third party application.
For example, the FriendCameo [12] Facebook application
is able to post content (e.g. messages, photos) to a user’s
Facebook feed/wall using Facebook’s /profile id/feed API
method, where profile id is the targeted Facebook user ID.
It is important to note that third party applications can po-
tentially execute any API call on behalf of a user, relying
on the type and scope of permissions granted to these apps.
In the previous example, the FriendCameo application could
only perform the /profile id/feed API call given the user has
granted it the “publish stream” permission. The full set of
permissions available to third party apps are defined by the
online platforms, and it is up to third party applications to
request the proper subset of permissions required. We be-
lieve users should have the final decision on whether to grant
requested permissions or not.

3.2 OAuth Standard
With an increasing trend towards offering online web ser-

vices that provide third party applications the ability to in-
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teract through open APIs and access user resources, OAuth
was introduced as a more secure and efficient method for
authorizing third party applications [32]. Traditional au-
thentication models such as the client-server model require
third party applications to authenticate with online services
using the resource owner’s private credentials, typically a
username and password. This requires users to present their
credentials to third party applications, hence granting them
broad access to all their online resources with no restrictions.
A user may revoke access from a third party application by
changing her credentials, but doing so subsequently revokes
access from all third party applications that continue to use
her previous credentials. These issues are amplified given
the high number of third party applications that potentially
get access to a user’s online resources. OAuth uses an intu-
itive mechanism where the roles of third party applications
and resource owners are separated. OAuth does not require
users to share their private credentials with third party ap-
plications; instead it issues a new set of credentials for each
application. These new set of credentials are per application,
and reflect a unique set of permissions to a user’s online re-
sources. In OAuth, these new credentials are represented via
an Access Token. An Access Token is a string which denotes
a certain scope of permissions granted to an application, it
also denotes other attributes such as the duration the Access
Token is considered valid. We are mainly interested in the
scope attribute within an Access Token. Access Tokens are
issued by an authorization server after the approval of the
resource owner. In this paper we extend upon this autho-
rization stage of the OAuth protocol.
When a third party application needs to access a user’s pro-
tected resources, it presents its Access Token to the ser-
vice provider hosting the resource (e.g. Facebook, Twitter)
which in turn verifies the requested access against the scope
of permissions denoted by the Access Token. For example,
Alice (resource owner) on Facebook (service provider and
resource host) can grant the FriendCameo Facebook appli-
cation (third party application) access to her email address
on her Facebook profile without ever sharing her username
& password with FriendCameo. Instead, she authenticates
the FriendCameo application with Facebook (authorization
server) which in turn provides FriendCameo with a proper
Access Token that denotes permission to access Alice’s email
address.
OAuth provides multiple authorization flows depending on
the client (third party application) type (e.g. Web servers,
and native applications). In this paper we focus on the Web
server authorization flow shown in figure 2 and detailed in
the OAuth 2.0 specification [33]. The web server flow is
typically used for third party applications that are able to
interact with a user’s web browser (e.g. Facebook appli-
cations). The authorization flow process consists of three
parties: 1)The end-user (resource owner) at browser, 2)The
web client (third party application), and 3)The authoriza-
tion server (usually the service provider, e.g. Facebook).
Our main focus will be on step “(A)” and “(B)” within the
web server authorization flow [33]. Step “(A)” is where third
party applications initiate the flow by redirecting a user’s
browser to the authorization server and passes along the
requested scope of permissions. In step “(B)”, the autho-
rization server authenticates the end-user, and establishes
her decision on whether to grant or deny the third party
application’s access request.
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Figure 2: Web Server OAuth Flow

3.3 OAuth and User Privacy
One of the main reasons behind OAuth was to increase

user privacy by separating the role of users (resource own-
ers) from that of third party applications. OAuth uses the
concept of Access Tokens, where a token denotes a set of cre-
dentials granted to third party applications by the resource
owners [31]. This avoids the need for users to share their
private credentials such as their username & password. It
also allows users to revoke access to a specific third party
application by revoking its Access Token.
OAuth 2.0 allows third party applications to request a set
of permissions via the scope attribute, and for users to grant
or deny such requests. If a user grants a third party appli-
cation’s request, then an Access Token (denoting the scope)
is issued for that application, hence granting it the scope of
permissions requested. The scope attribute represents the
set of permissions requested by third party applications, and
will is our main focus in this paper. In the web server au-
thorization flow seen in figure 2, the scope parameter is part
of the request URI that is generated by third party applica-
tions (Step “(A)” in figure 2). It is a list of space-delimited
strings, each string mapped to a certain permission or access
level. For example, the FriendCameo Facebook application
requests permission to post to a user’s Facebook feed/wall,
to log in to Facebook chat, to access her email address, and
to check her friend’s online/offline presence. FriendCameo
requests these permissions with a scope attribute value of
“publish stream,xmpp login,email,friends online presence”.
The scope value becomes part ‘of the OAuth request URI
sent to the authorization server (Facebook’s OAuth imple-
mentation uses comas rather than spaces to separate each
requested permission). Step “(B)” of figure 2 is where users
grant or deny the requested scope value.

We propose an extension to the OAuth 2.0 authorization
flow regarding the Web Server client profile detailed in sec-
tion 1.4.1 of the OAuth 2.0 specification [32]. Before users
make their decision on the requested scope of permissions,
we introduce a new level of awareness and control to the
user via an in-house developed browser extension. The ex-
tension represents a final line of defense against third party
applications and their requested permissions.

3.4 Collaborative Filtering
Recommendation systems are systems that try to assist

users in evaluating and making decisions on items by pro-
viding them opinions and prediction values as a set of rec-
ommendations [35]. These set of recommendations are usu-
ally based on other people’s opinions and the potential rel-
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evance of items to a target user. The first recommender
system Tapestry [14], followed the approach of “Collabora-
tive Filtering”, in which users collaborate towards filtering
documents via their individual reactions after reading cer-
tain documents. Since then, collaborative filtering has been
widely adopted and is accepted as a highly successful tech-
nique in recommender systems [25, 28, 26, 38].
In a context of access control and user privacy, items in
a collaborative filtering model can be mapped to individ-
ual privacy attributes or permissions. Users make decisions
on privacy attributes, i.e. grant them to third party ap-
plications or not. This is similar to other recommendation
systems in which users make decisions on items, e.g. to
rent a movie or not. Users have their own privacy prefer-
ences, but may benefit from the community’s collaborative
privacy decisions to make their own, especially if they lack
the knowledge to make good privacy decisions [20]. The ef-
fect of community data on user privacy has been investigated
by Besmer et al. [4], who explored the effect of community
data on user behavior when configuring access control poli-
cies. Their work indicated that community data impacts
user behavior, when substantial visual cues were provided.
Goecks et al. [13] explored the effects of community data in
the domain of firewall policy configuration and web browser
cookie management. Their results also indicated that users
did utilize community data in making their own decisions.

In this paper we propose a collaborative filtering model
that utilizes community decisions in providing recommenda-
tions to users who install third party applications requesting
access to their privacy attributes.

4. PROPOSED OAUTH FLOW
We propose an extension to the OAuth 2.0 authorization

flow for Web Servers, by introducing two new modules into
the flow: 1)A Permission Guide that guides users through
the requested permissions, and shows them a set of recom-
mendations on each of the requested permissions, and 2)A
Recommendation Service that retrieves a set of recommen-
dations for the requested permissions following a collabora-
tive filtering model as explained in section 4.2. Our OAuth
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Figure 3: Proposed OAuth Flow

extension focuses on step “(A)” of the Web Server authoriza-
tion flow in OAuth 2.0 [33]. We revise step “(A)” to become

a six stage process as shown in figure 3 and explained in the
following steps:

- (A1): The web client (third party application) redi-
rects the browser to the end-user authorization end-
point by initiating a request URI that includes a scope
parameter.

- (A2): The Permission Guide extension captures the
scope value from the request URI and parses the re-
quested permissions. At this step the extension allows
users to choose a subset of the permissions requested.

- (A3): The Permission Guide extension requests a set
of recommendations on the parsed permissions. This
is achieved by passing the set of permissions to the
Recommendation Service.

- (A4): The Recommendation Service returns a set of
recommendations for the permissions requested by the
web client.

- (A5): Using the set of returned recommendations, the
extension represents the permissions with their respec-
tive recommendations in a user friendly way.

- (A6): The Permission Guide extension redirects the
end-user’s browser to a new request URI with the new
scope (scope′), assuming the user chooses to modify
the requested permissions.

4.1 Permission Guide
The Permission Guide is represented by a browser exten-

sion that integrates into the authorization process by captur-
ing the scope parameter value within the request URI gen-
erated by a third party application. Once the scope is cap-
tured, the extension parses the requested permissions and
presents them in a user friendly manner as shown in Figure
7. A readable label of each requested permission is shown
to the end-user e.g. it shows “Facebook Chat” rather than
“xmpp login”, and a detailed description for each permission
is also shown when the user hovers over a certain permission
label.

The extension also shows users a set of recommendations
for the requested permissions. For each permission there
is a thumbs-up and a thumbs-down recommendation value.
These recommendations represent prediction values that we
calculate following our model in section 4.2. These predic-
tion values represent the likeliness of a user to grant or deny
a certain permission based on her previous decisions and on
the collaborative decisions of other users. Users who have
not made any decisions yet, are shown recommendations
based on other user decisions.

The extension allows users to customize the requested per-
missions by checking or unchecking individual permissions,
where a checked permission is one the user wishes to grant
to the third party application and an unchecked permission
is one she wishes to deny access to.
Once a user decides on the permissions she wishes to grant
and deny, she simply needs to click a Set Permissions but-
ton on the extension (blue button in Figure 7). This will
trigger the extension to generate a new request URI with a
new scope scope′, and forward the user’s browser to this new
request URI. scope′ will always be a subset of the original
requested scope, i.e. scope′ ⊆ scope.
An example scope′ from the FriendCameo application we
saw earlier could be as follows:

scope′ = publish stream
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reflecting the user’s desire to allow FriendCameo to post to
her feed/wall, but deny it access to her email, Facebook
chat and friend’s online/offline presence. Note that using a
subset of the permissions requested could potentially hinder
the functionality of a third party application once installed.
Investigating such consequence is out of the scope of this
paper, but we include it as part of our future work.

Our Permission Guide extension also collects the user’s
decisions on the requested permissions, hence allows us to
generate a data set of decisions to be used in our recom-
mendation model explained in section 4.2. These decisions
are uploaded to our servers once a user sets her desired per-
missions within the extension, i.e. clicks the Set Permis-
sions button. The data uploaded to our servers includes:
app id, requested perms, decisions, recommendations, where
the app id is the application’s unique id which is assigned
by the service provider (e.g. Facebook), the requested perms
are the scope of permissions requested by the third party
application, the decisions are the individual user decisions
(grant or deny) on each of the requested permissions, and
the recommendations are the recommendation values at the
time the user made her decision.

Our goal is to provide a simple and usable user interface
for interacting with permission requests, hence increasing
user awareness and providing an easy mechanism for guiding
users in making their decisions.

4.2 Recommendation Model
We propose a Recommendation Service component that

extends upon our Permission Guide extension. Let A, U
and P represent the set of applications, users and permis-
sions respectively. A user ui ∈ U can make a decision
di ∈ {grant, deny} on a permission pj ∈ P for an applica-
tion ak ∈ A. An application ak which requests permissions
p1, · · · , pm is mapped to a set of decisions d1, · · · , dm made
by the user installing ak.

Our model follows the multi-criteria recommendation model
where user recommendations are calculated per criterion [25,
2]. The model utilizes the set of permissions P as a set of
criteria, i.e. each permission pj ∈ P represents an individ-
ual criterion within the model. The multi-criteria approach
fits our model as decisions are made per permission (cri-
teria) rather than an application as a whole. We model a
user’s utility for a given application with the user’s decisions
d1, · · · , dm on each individual permission p1, · · · , pm using
Function 1.

D : Users×Applications→ d1 × · · · × dm (1)

Function 1 represents a user’s overall decision on a certain
application via the set of decisions made on each individu-
ally requested permission. That is, a user ui makes a deci-
sion di on an application ak with respect to an individual
permission. For each permission pj , there exists a matrix
Cpj representing user decisions on pj for each application
ak ∈ A, see Figure 4. A matrix entry di with a value of 1
denotes a user has granted ak the permission pj , whereas a
0 denotes a deny. Entries with “?” values denote the user is
yet to make a decision on permission pj for application ak.
Our model provides recommendations to users that guide
them in making these future decisions. Applications that do
not request a permission pj have an empty entry in Cpj and
are handled properly in our implementation.
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Figure 4: A three-permission (criteria) model with
Cp1 , Cp2 , & Cp3 . User decisions on applications made
per-permission

For example, let p1 = birthday, p2 = email, and p3 =
location, where each represents a single criterion within a
three-criteria model. Let u1 = Alice who installed ap-
plication a1 that requests access to the permissions birth-
day, email, and location. As illustrated in Figure 4, Alice
has granted a1 the permissions birthday and location (d1 =
grant, d3 = grant), whereas denied email (d3 = deny). Al-
ice has yet to make a decision on a2 i.e. a single decision
on each requested permission ∈ {birthday, email, location}.
Our proposed model utilizes the set of decisions for each Cpj ,
hence providing a recommendation that fits each criterion.

4.3 Collaborative Application Filtering
We define Prpj ,ak as the overall probability of permission

pj being granted to application ak. The various probabilities
can be represented as a Permissions×Applications matrix
as seen in Figure 5. Each entry Pjk in the matrix maps to
the Prpj ,ak for permission pj and application ak. Lower Pr
values indicate less user willingness towards granting certain
permissions to an application. These probability values are
based on our collected data set as explained in detail in sec-
tion 6. Note that these values are driven by user decisions
within our framework and are frequently updated. Figure 6
shows an example set of applications {a1, a2, a3, a4, a5}, per-
missions (birthday,email,location,sms,photos) and their cor-
responding Prpj ,ak values. For example, Pr32 = Prlocation,a2

= 0.15, which denotes a low probability of the permission lo-
cation being granted to application a2 by users who installed
a2.

!
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Figure 5: Permissions × Applications matrix

In our system, users collaborate towards increasing or de-
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 a1 a2 a3 a4 a5 

birthday  0.6 0.75 1 0.2 0.3 

email 0 0.9 0.25 0.7 0.1 

location 1 0.15 0 0.35 0 

sms 0 0.4 0 1 0.5 

photos 0.2 0 0.6 0.25 0 

Applications 

P
er

m
is

si
on

s 

Figure 6: Example Prpj ,ak values.

creasing the Prpj ,ak values of various applications, hence
filtering applications according to the willingness of users
to grant them certain permissions. Filtering applications is
based on similarity values calculated using the Prpj ,ak of
each application. We also use the similarity value to predict
recommendation values within our model.

Collaborative filtering algorithms have mainly been based
on one of two popular similarity measures, 1)Pearson Corre-
lation and 2)Cosine-similarity [18, 28]. Our model measures
similarities between applications using Pearson Correlation
based on the Permissions×Applications matrix. We use an
application-based similarity measure similar to item-based
similarity in Collaborative Filtering algorithms. Item-based
similarity proved to be more accurate than others such as
user-based similarity [37], hence we follow a similar approach
where items in our context map to applications.

Equation 2 represents our application-based similarity mea-
sure, which in terms is the Pearson correlation value between
applications ai and aj , where P is the set of all permissions
in our system and Prai is the average probability for appli-
cation ai being granted a permission in P.

sim(ai, aj) =

∑
∀p∈P

(Prp,ai − Prai)(Prp,aj − Praj )√ ∑
∀p∈P

(Prp,ai − Prai)
2

∑
∀p∈P

(Prp,aj − Praj )2

(2)
Applications that don’t request a certain permission pj have
a Prpj ,ai of zero. Also note that −1 6 sim(ai, aj) 6 1
where -1 denotes a reverse correlation between ai and aj ,
0 denotes no correlation, and 1 denotes a exact correla-
tion. Applications which are similar and highly correlated,
are those which request a similar set of permissions, and
have similar Prpj ,ak values for each of their requested per-
missions. For example, if both applications a1 & a2 re-
quested the same set of permissions {p1, p2}, and they have
a Prp1,a1 = Prp1,a2 and a Prp2,a1 = Prp2,a2 , then a1 and
a2 are considered highly correlated and their application-
similarity value sim(ai, aj) will be close to 1.

When predicting recommendation values for permissions
of application ai, we make sure they are based on ai’s “Near-
est Neighbors”, that is, the set of applications where sim(ai, aj)
is highest and sim(ai, aj) > 0 [35].

Prediction Model.
When a user ui, say Alice, wants to install application ai,

we calculate a set Rai , where rui,pj ∈ Rai is a prediction
value for permission pj requested by ai. rui,pj ∈ Rai is a
prediction of how likely Alice would be willing to grant pj

to ai. Equation 3 is how we calculate rui,pj for application
ai. Note that we calculate rui,pj for each pj requested by
an application ai.

rui,pj = Prpj +

∑
a∈N sim(ai, a) ∗ dui,a∑

a∈N |sim(ai, a)| (3)

rui,pj is based on multiple factors: First, Prpj , which is
the average probability permission pj is granted over all ap-
plications in A. Prpj can easily be calculated via it’s corre-
sponding row in the Permissions×Applications matrix (see
Figure 5). Note that Prpj is driven by all users in our sys-
tem. Second, sim(ai, a), which is the application-similarity
value between ai and a ∈ N , where N represents ai’s “Near-
est Neighbors”. The number of applications in N depends
on the application-similarity values calculated by sim(ai, aj)
earlier. Third and finally, dui,a which is ui’s previous deci-
sions on the applications within N in regards to permission
pj . dui,a values are captured via the Cpj matrix explained
earlier (see Figure 4).

Notice that the prediction values calculated are based on
both a user’s previous decisions and on the decisions of other
users, hence capturing the essence of Collaborative Applica-
tion Filtering.

5. BENEFITS AND ATTACKS
In presenting our browser extension, we must also ac-

knowledge the various attacks against which it might be
purported. We believe the most likely attack scenarios all
center around abusing the extension to manipulate the rec-
ommender model into recommending decisions that most
favor the attacker. These attacks might take the form of:

a) Frequent use of the extension for the same application.
Attackers may use the extension to load the same applica-
tion repeatedly in the hopes to increase the frequency of
their own decision in the underlying database. For example,
an attacker may want to direct users to reveal their email
address and so may attempt to load the OAuth request re-
peatedly, choosing that option.

We can mitigate this risk considerably by linking the user’s
request to their Facebook user id (available to the plug-in
through the DOM model of the browser page) and ensuring
that only the most recent permission decisions are stored in
the database.

b) Decoding and manipulation of the API. Attackers may
decode the extension and exploit its internal programming
interface to make direct calls to the underlying web service
in an attempt to inflate user statistics with an eye to influ-
encing decisions. Our previous mitigation method will be
useless here since any information sent to the web-service
may be captured and replayed, perhaps varying slightly the
unique user information in an appearance of legitimacy. Fur-
ther complicating any countermeasures is the fact that the
entire code resides on the client computer and can reason-
ably be suspect to successful reverse engineering.

In this case, we propose to use out-of-band methods to
attempt to deter and detect fraud. We can use the source
IP address as one method to further link an individual web
service call to a unique user. This has an admittedly loss
of fidelity when user requests are routed through proxies
(such as those found in institutional use, or at very large
internet service providers). Combining an IP address with
a minimum time interval between requests may provide us
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adequate protection in this regard. Limiting unique web-
service calls to calls within a 15 minute window from the
same source IP address may serve as a sufficient preventative
control; post-request log file analysis may further provide
some detective measures towards preventing fraud.

Our web-service must also be resilient against known web
attacks and our servers undergo web application and server
scanning to prevent the most common and known attack
vectors such as buffer overflow, SQL injection, and cross-
site scripting attacks.

6. EXPERIMENTS
We evaluate our proposed OAuth 2.0 extension using Face-

book as our target platform, keeping in mind that our exten-
sion is also applicable to other OAuth 2.0 platforms. Face-
book is an ideal target given its large user base of over 500
million active users, and its extensive directory of third party
applications (over 550,000 active applications) [9]. Facebook
is also one of the major platforms to adopt the OAuth 2.0
protocol, which makes it a good fit for our evaluation pro-
cess.

Figure 7: Permission Guide Plugin UI

To evaluate our proposed OAuth extension, we imple-
mented two main components: a permission guide, and a
recommendation service.

Permission Guide.
Our proposed Permission Guide in section 4.1 was imple-

mented as a Firefox plugin using a combination of Mozilla’s
XML User Interface Language (XUL) [29] and Javascript.
XUL was used to build the user interface of the plugin as
seen in figure 7 whereas Javascript was used to interact with
our back-end recommendation service API. The plugin was
tested on Firefox versions 3.6 and 3.5 running on Mac OS X
10.6, Linux CentOS and Windows (XP, Vista) machines.

Once installed, the extension resides within the browser’s
bottom status bar and begins monitoring, waiting for a Face-
book application installation process to commence. The ex-
tension does not otherwise interfere with a user’s browsing
experience. Once a Facebook application installation pro-
cess is detected, the extension is activated and instantly ap-
pears in the bottom right corner of the browser’s window.
An installation process is detected by parsing the URLs a
user visits and searching for the following:

1. Permission Request: The URL for permission re-
quests by Facebook applications can be identified by
locating the substrings permissions.request and face-
book.com/connect/uiserver, denoting a Facebook ap-
plication permission request.

2. Request Type: If a permission request is detected,
the plugin looks for the type of request issued, i.e. Ba-
sic permission access, or Extended permission access.
A basic permission access request is identified by a
missing or empty scope attribute within the permis-
sion request URL. Otherwise, if the scope attribute
is located, the extension recognizes that an extended
permission access request in progress.

Recommendation Service.
The service is a PHP based solution running on Apache

2.2.14 with MySQL 5.1.5 as the data store solution. We
run the service on a desktop machine running Linux Cen-
tOS, with 2GB RAM and a 2.0 GHz Intel Xeon CPU. The
recommendation service applies the recommendation based
schema explained in section 4.2 by providing two private
API methods which are used by our Firefox plugin. The
first API method is the getRecommendations method which
accepts an app id and a set of requested permissions. It
then returns a set of recommendations in a JSON [23] for-
mat which maps a recommendation value to each permis-
sion. The second API method provided is the postDecisions
method which is invoked by our plugin when a user makes
her decision on the requested permissions. This API method
takes an app id, a set of requested permissions, a set of user
decisions on these permissions, and the set of recommen-
dation values displayed at decision time. These values are
stored onto our recommendation back-end server and used
later in our recommendation based schema.

For our evaluation purposes, we are primarily focused on
extended permission requests because those are the permis-
sions which are customizable by users on the targeted plat-
form (Facebook), whereas basic permissions are mandatorily
granted to each installing application. In the case of basic
permission access requests, our extension notifies users that
basic access is requested, and no customization is possible.
In the case of extended permission requests for application
ak, the plugin performs the following :

1. Extracts the extended permissions requested by pars-
ing the scope value from within the request URI. For
Facebook, the scope value is a list of comma-delimited
strings, each string representing a certain requested
permission.

2. Asynchronously retrieves recommendations for the set
of requested permissions by invoking our getRecom-
mendations API. Once the recommendations are re-
trieved, the plugin user interface is updated properly.

3. Dynamically generates the user interface to be shown
to the user based on the requested permissions and
their respective recommendation values. Figure 7 is
an example interface for

scope=publish stream,offline access,user photos,email

4. Attracts the user’s attention by changing the plugin
status to ”Customize Now!” and revealing the user in-
terface at the bottom right corner of Firefox.

Figure 8 illustrates the overall process of handling and de-
tecting a Facebook application permission request.

Once the user makes a decision on the permissions she
would like to grant or deny by clicking the ”Set Permis-
sions” button, the plugin will perform two actions: 1)Invoke
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Figure 8: Handling Permission Requests

our postDecisions API method passing along the user deci-
sions. 2)Generate a new scope value using the permissions
granted by the user. Using this new scope scope′ the user
is then redirected to a customized application request URI,
resulting in a new Facebook application permission request
page. At this point the user has defended herself against un-
necessary accesses by applications. It is important to note
that our approach does not allow applications to get access
to private data (e.g. email) at all, because we prevent this
before the application is installed. The default approach
by Facebook is to remove access to private data after the
application is installed, which is realistically not sufficient
because applications have already gotten access to the data
they need.

6.1 Results
Our proposed browser extension is hosted on the Mozilla

Add-Ons website under the add-on name (FBSecure)2, in
addition to our own website3. These two websites, in addi-
tion to using Twitter [39], were used as means of recruiting
participants for this study which is approved by our univer-
sity’s IRB. The extension was installed by 1286 Facebook
and Firefox users who installed 1561 unique Facebook ap-
plications. The results summarized in this section are based
on the population of users who installed our Firefox exten-
sion, use Facebook, and sought out privacy extensions. This
user sample is mainly biased towards privacy aware users,
but also includes regular users recruited via Twitter, whom
did not specifically seek out privacy extensions.

We gathered over 4700 user decisions on 56 different Face-
book extended permissions. In this section we present the
evaluation of our recommendation model based on the user
decisions collected during the usage of the plugin. For ev-
ery application permission request, our extension enabled
the collection of the details of the requested permission, the
generated recommendation, and the user selected permis-
sion settings. Figure 9(a), shows the probability of applica-
tions requesting different permissions, for example we found
that the most popular requested permission is the “pub-
lish stream” permission, which enables apps to post mes-
sages on a user’s wall, and is requested by 45% of the Face-
book apps. Other popular permissions include email, of-
fline access and user birthday.

Over all our user population, Figure 9(b) shows how likely

2https://addons.mozilla.org/firefox/addon/fbsecure
3http://liisp.uncc.edu/fbs

users were willing to grant different permissions. Our results
show that users have varying willingness towards different
permissions, for example only 31% of the users shared their
email will apps, while 58% shared their online status. Note
that some of the permissions requested from a user to give
application access to his friends’ information, for example
“friends location”. Users were on average 12.3% more will-
ing to share their friends’ data compared to their own data.
Figure 9(c), summarizes distribution of the number of per-
missions requested by applications, with an average of 3.1
permissions requested per application. Figure 9(d), shows
the average number of granted permissions for apps request-
ing permissions, it can be noted that on average applications
are granted around 44.7% of the permissions that are re-
quested. Figure 9(e), shows the distribution of number of
applications by users who installed the plugin, on average
the plugin was used to install 5.2 applications. The exten-
sion provides users with recommendations for each of the
application requested permissions. The recommendation is
presented to the user as thumbs up and thumbs down with
their associated recommendation values based on the the
recommender model presented in previous sections. We are
interested in evaluating whether the recommender system
properly predicts the user’s decision. Also we are interested
in evaluating what is the lowest (highest) recommendation
value that will influence users into granting (denying) a re-
quested permission, we refer to this value as the threshold
T . Where users said to be encouraged to grant the permis-
sion if the recommendation is higher than T and to deny
otherwise. In this case we have four possible outcomes for
the recommended and decided value, as shown in Table 6.1.
In literature there are several proposed metrics for evaluat-

Recommended Not Recommended
Used True Positive (TP) False Negative (FN)
Not Used False Positive (FP) True Negative (TN)

Table 1: Classification based on user decisions

ing recommender system performance, we focus on the most
adopted metrics in literature which are based on three mea-
sures namely accuracy, precision and recall [19]. Accuracy of
the recommender system is the degree of closeness of the rec-
ommender system to the actual decision taken by the user,
which is calculated as TP+TN

TP+TN+FP+FN
. The precision or the

repeatability of the recommender system, is a measure of the
degree to which repeated recommendations under the simi-
lar conditions generate the same results, which is computed
as TP

TP+FP
. The recall or sensitivity is a measure of the abil-

ity of the recommender system to select instances of either
to recommend or not, which is computed as, TP

TP+FN
. Fig-

ure 10, shows the accuracy, precision and recall calculated
for different threshold values. Note that the system main-
tained an accuracy about 90% over all threshold values. The
precision and recall are inversely proportional with a break
even region around the threshold value of 45%, which could
explain that the recommendation value of 45% or higher is
an indication that the system is recommending to grant the
requested permission, and lower than 45% is recommending
to deny the permission. Also note that the system achieves
a precision and recall values of 92% and 85% around this
threshold.

In addition to investigating the accuracy, precision and
recall measures we further investigated the causality of our
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Figure 9: Application and User Permission Probability Profiles

recommendation scheme. That is, do users who use the rec-
ommendation based scheme less likely to grant permissions
to applications. To investigate, our browser extension was
designed to accommodate two groups of users. The first
group (G1), are users who were not shown the recommen-
dation values (see Figure 11(a)). The second group (G2),
are users who were shown the recommendation values gen-
erated by the recommendation system (see Figure 11(b)).
The plugin randomly selected users who belonged in each of
the groups. For each group we recorded the users’ openness,
which is the percentage of granted permissions for each ap-
plication installed. The average user openness of G1 and
G2 were 57.4% and 33.2% respectively, which indicates that
users who were not presented with the recommendation were
more likely to grant permissions to applications. To compare
the two groups we performed a T-test of the hypothesis to
investigate the following question, “on average, are users in
G2 less open than users in G1?”. Using the collected data,

with a significance level of 5% this hypothesis was accepted
(P-Value of 0.0001). These results show that the users who
were presented with the recommendation values were less
open to granting permissions to applications. Note that,
in this experiment there was no control over specific apps
within each group. The results presented in this experi-
ment are based on the average openness values calculated
over all installed apps in both groups. This experiment can
be further enhanced by controlling specific apps across both
groups, which will be addressed in future experiments.

7. RELATED WORK
Developing usable tools that provide fine-grained control

over user private data is a highly emerging problem in online
platforms especially within social networks (e.g. Facebook,
Twitter, MySpace) [15, 1, 6, 17]. Studies such as the one
by Acquisti and Gross [16, 1] indicate user concern over
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Figure 11: Recommendation experimental setup

their privacy on social networks while most users did not
apply strict privacy settings on their online social profiles.
This was mostly due to the lack or poor understanding of
what privacy controls are available to them. Our work in
this paper focuses on providing a usable tool via a browser
extension which allows for users to easily understand and
customize their privacy settings at application installation
time. We also increase user awareness by providing them a
set of recommendations on the requested privacy attributes.

Using browser-based plugins and extensions is another
widely used approach in aiding information privacy. Jenkin
et al. [21] originally identified this approach to address the
problem of ”an information provider wanting to serve secrets
embedded within regular web pages to authorized users“.
The authors’ original italicized elements hold true for our
model, substituting users for information providers, iden-
tity attributes for secrets, and authorized third party appli-
cations for authorized users. Today the “open source” model
is routinely used to enable community-contributed plug-ins
for web browsers that aid in some aspect of security; as one
example, the Mozilla Firefox browser boasts over 500 secu-
rity and privacy plug-ins available at their add-ons website
[30]. As part of this community we made our browser ex-
tension available to the public via Mozilla’s website.

Felt et al. [11] detail a novel solution for protecting pri-
vacy within social networking platforms through the use of
an application programming interface to which independent
application owners would agree to adhere to. Our approach
requires no such agreement and, barring a wholesale adop-
tion of a privacy proxy such as the one which Felt proposes,
still enables the user to protect their information attributes.
We achieve this by utilizing the already popular OAuth 2.0
authorization flow and providing a seamless experience to
users for customizing and protecting their private informa-
tion attributes.

Fang and LeFevre’s work asserts the value in providing
highly accurate privacy settings with reduced user input
[10]. Using real user input, they infer a set of privacy-
preferences using a machine learning approach. While the
authors’ study is based on real users, i.e collecting data from
real users, they do not provided a technique that applies
the inferred privacy settings onto a user’s real online pro-
file. Our implemented browser extension is not only based
on real user data, but also capable of applying a user’s de-
sired privacy decisions to their real online profile, in this case
their Facebook profile. They also focus on privacy settings
related to a user’s friends network, where our work focuses
on third party applications which we believe represent a big-
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ger threat to user privacy, especially given the huge catalog
of third party online social applications which request ac-
cess to a user’s private data and are also able to execute
actions on behalf of users (e.g. posting images to a user’s
profile, or sending an SMS message). We also note that us-
ing a machine learning technique is not ideal in situations
where instant privacy suggestions are required, which is the
case when installing third party applications within social
networks such as Facebook.

Besmer et al. [4] demonstrated in their research the value
of social navigation cues in prompting users to make in-
formed privacy decisions; where that research was not con-
cerned with the type of data and arbitrarily assigned a rec-
ommended positive or negative cue for each item, our re-
search is very specifically tied to data types and our rec-
ommender model provides cues that are based on real user
privacy decisions. Our work is also significantly different in
that we provide a real life user study through a real world
implementation of a browser extension that integrates with
a user’s actual Facebook profile, where the research by Be-
smer et al. was experimental. We also note that our browser
extension applies a user’s privacy decisions onto their real
privacy settings within Facebook.

While much has been researched about the privacy im-
pacts of recommender systems themselves [36, 34, 7], little
research appears to be available for the use of recommender
systems in aiding privacy and security systems. One no-
table exception is in the research of Kelly et al. [24] where
the authors demonstrated the benefit of combining collab-
oration among a user population in the suggestion of an
individual user’s privacy policy. They also propose an in-
cremental model for optimizing a user’s policy over time.
We find this approach not optimal when dealing with third
party applications, that once installed, can harvest a user’s
private social network data. Optimal and instant privacy
protection should be provided to users at installation time,
which we achieve through our browser extension.

Liu and Terzi offer a framework for deriving a “privacy
score”to inform the user of the potential risk to their privacy
created by their activities within the social network [27].
However, such research does not account for the discrete
control over attributes which our research enables.

Goecks et al. [13] explore the effects of community data in
the domains of firewall policy configuration and web browser
cookie management. Their research indicates that users
utilized community data in making their privacy decisions.
They also investigate the effects of informational cascades
and the possible misuse of community data within social
navigation systems. They present two approaches for miti-
gating the effects, and we believe these can complement our
work.

8. CONCLUSION AND FUTURE WORK
Usable privacy configuration tools are essential in provid-

ing user privacy and protecting their data from third party
applications in social networks. We proposed an extension
to the web server authorization flow of OAuth, and imple-
mented a browser-based extension that integrates into the
existing authorization flow, and provides users the ability
to easily configure their privacy settings for applications at
installation time. We also proposed a multi-criteria recom-
mendation model based on collaborative filtering which in-
corporates the decisions of the community and previous de-

cisions made by an individual user. Based on this model
our browser extension provides users with recommendations
on permissions requested by applications. We successfully
demonstrate that our extension, combined with our multi-
criteria recommendation model leads to the preservation of
irrevocable, immutable private identity attributes and the
preventing of their uninformed disclosure during application
installation. Among popularly requested extended permis-
sions, individuals - when given the choice - will, in the ma-
jority of cases, deny the request. We demonstrate the ef-
fectiveness of the recommendations through a causal group
of users who were not shown any recommendations, and we
found them to be more willing to grant permissions to third
party applications than those who were provided with rec-
ommendations.

In the future, we will investigate cases where over time,
users might setup multiple privacy configurations for the
same application. We will investigate possible reasons for
this, such as: a user’s increased privacy awareness, or mis-
configurations that hinder an application’s ability to func-
tion properly. In the later case, we can build a feedback
mechanism that handles such misconfigurations. We also
plan on investigating the effect of using different visual styles
of showing recommendations. Instead of thumbs up and
down, we could explore using a horizontal bar indicating
the recommendation value and adapting its color to the
value itself. We will also investigate clustering applications
based on their functionality before composing the recom-
mendations and incorporate this the similarity measure. Fi-
nally, we want to test our proposed framework in OAuth
2.0 environments other than Facebook, plus provide various
versions of our browser extension that are compatible with
other browsers such as Google Chrome, and Safari.
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