
Poster: Helping engineers design NEAT security warnings
Rob Reeder, Ellen Cram Kowalczyk, and Adam Shostack

Microsoft
1 Microsoft Way

Redmond, WA 98052
{roreeder, ellencr, adam.shostack}@microsoft.com

1. ABSTRACT
Software engineers who design large systems have a multitude of

concerns to address before shipping their software. Usability and

security are merely two of these concerns, and usable security is a

small slice of those. Thus, software engineers can only be

expected to spend a small fraction of their time on usable security

concerns. Our team, the Usable Security team in Microsoft

Trustworthy Computing, acts as a central resource for product

teams. We have been working to help them use the latest

knowledge from the usable security community to design security

warnings. Because these engineers have so many demands on

their time, we have had to condense our guidance into a short,

easily consumed form. In fact, we have condensed it to four

letters: NEAT. A good security warning should be Necessary,

Explained, Actionable, and Tested. With these four letters and

the training materials we have built around them, engineers are

able to comprehend and use the latest usable security results.

2. INTRODUCTION
Computer users face a barrage of decisions about who and what to

“trust,” and when to be concerned about their security. These

security decisions arise when users initiate activities like visiting a

website, installing an executable from the Web, or using an

application that needs to get through the firewall. Security

decisions are surfaced to users by a platform – for example, an

operating system or a Web browser. Designers of platforms

design the experience users go through when making trust

decisions, and this user experience can lead users to make better

or worse decisions, depending on how they are designed.

Our team at Microsoft, the Usable Security team, was formed to

help engineers within Microsoft design better user experiences for

making security decisions. This paper is a part of the story of how

we have done that and how we help engineers today. We believe

the approach is likely usable at other organizations, or by

researchers analyzing the usable security of systems.

3. DEVELOPING GUIDANCE FOR

ENGINEERS
Our team’s first task was to gather the usable security knowledge

that we would encourage Microsoft engineers to follow. We

gathered a group of internal Microsoft experts in both security and

usability to help determine what that knowledge should be.

Initially, the group surveyed the need for usable security advice by

inviting product teams with plans for security-related features to

present those features to the group and receive expert feedback on

the user experiences in those plans. Through these sessions, the

group learned what usable security questions the teams needed

answers to. Key questions included:

• When is it appropriate to interrupt users with a warning

dialog to ask security questions?

• When presenting a security question to a user with a

dialog, how should the dialog user interface be designed?

After several of these sessions, the group began an effort to

gather the knowledge to share with teams. To gather this

knowledge, the group drew upon internal and external usable

security research as well as insights gained from the presentations

by product teams. Since usable security is still a nascent field,

this process was not easy; there are many competing ideas and

many gaps in knowledge that make it difficult to gather a

definitive set of knowledge to share with engineers. Existing

literature was seen as too remote from the day-to-day needs of

engineers.

Ultimately, the group produced a paper that captured a

consensus view of the most important

aspects of knowledge about designing

usable security warnings to share as

guidance with engineers. The paper

consisted of 24 pages, with 68 items of

advice arranged into a hierarchy three

levels deep. Having produced the

paper, we showed it to a few engineers

to see what they thought. We quickly

saw we had a significant problem:

Microsoft engineers do not have

time in their day to read 24

pages and 68 bullet points about

usable security. The list of

concerns for a Microsoft

engineer is long; it includes functionality, performance,

reliability, localization, accessibility, backward compatibility, and

maintainability, just to name a few. Security and usability are

both on this list, to be sure, but usable security is only a tiny slice

of usability (most of a product’s user experience has nothing to do

with security) and a tiny slice of security (security includes both

the development of security-related features and product-wide

activities like threat modeling and penetration testing). Time for

usable security is thus very limited.

So, our team took on a second task to simplify our usable security

guidance. As we confronted this second task, we also sought to

satisfy a second goal: raising awareness of the importance of

Copyright is held by the author/owner. Permission to make digital or

hard copies of all or part of this work for personal or classroom use is

granted without fee.

Symposium On Usable Privacy and Security (SOUPS) 2011, July 20-

22, 2011, Pittsburgh, PA, USA.

Figure 1. Wallet-sized cards

summarizing our first-

version usable security

guidance.

usable security. Since the field is still nascent, not all engineers

have been exposed to it. We saw an opportunity as we simplified

our guidance to both make it easier and faster for engineers to

consume and also to make it more memorable by inventing a

convenient mnemonic. The mnemonic we came up with is a nifty

acronym: NEAT.

4. NEAT: WHAT SECURITY WARNINGS

SHOULD BE
As we reviewed our 24 pages of guidance with its 68 bullet

points, a few stood out as particularly important to help answer

the key questions product teams had about how to design good

security warnings. We took these key points and condensed them

into NEAT. The core message of NEAT is that a security warning

should be:

• Necessary: A warning should only interrupt a user if it is

absolutely necessary to involve the user. Sometimes, a system can

automatically take a safe course of action without interrupting the

user. Sometimes, a security decision can be deferred to a later

point in time.

• Explained: If it is actually necessary to interrupt the user with a

security warning, the warning should explain the decision the user

needs to make and provide the user with all the information

necessary to enable them to make a good decision. Since the

Explained part of NEAT is perhaps the most important, we

devised another acronym, SPRUCE (see below), to help engineers

remember what information to provide in a security warning.

• Actionable: A security warning should only be presented to the

user if there is a set of steps the user could realistically take to

make the right decision in all scenarios, both benign (where there

is no attack present) and malicious (where an attack is present).

• Tested: Security warnings should be tested by all means

available, including visual inspection by many eyes and formal

usability testing.

For the Explained part of NEAT, we include the acronym

SPRUCE, to represent six of the key elements of a well-explained

security warning:

• Source: An explanation of the source of a decision – the

application that raised it and the item (file, website, etc.) the user

is being asked to trust.

• Process: A series of steps the user can take to make a good

decision, and a clear statement of the knowledge the user has that

might help make the best decision (e.g., sometimes knowing what

the user is trying to accomplish can help the system make a better

decision).

• Risk: An explanation of the potential consequences of getting

the decision wrong.

• Unique knowledge user has: A good warning only occurs when

a user has specific preferences or contextual information that the

system does not. Those preferences or that information should be

explicitly identified and communicated to the user either

implicitly or explicitly, e.g., is this network you’re connecting to

at home, at work, or at an airport?

• Choices: A list of options the user has, a recommendation from

the system about what to do (usually this means recommending

the user choose the safer option), and a clear statement of what

will happen for each option the user may choose.

• Evidence: Any information the user should factor into their

decision; e.g., if this is a decision about whether to run a program,

the program’s publisher is an important piece of evidence.

To promote our NEAT guidance, we have developed training

materials to help engineers remember NEAT and dig deeper into

the details of our guidance if they need to. We have produced

handy wallet-sized cards with the NEAT acronym on one side of

the card and CHARGES, an earlier version of the SPRUCE

acronym, on the other, along with text to explain them (see Figure

1). We have developed a one-hour talk we deliver to product

teams and an extensive slide deck with detailed examples that

engineers can use on their own. We have a checklist that

engineers can use to ensure they have followed all of the aspects

of NEAT, and we have shared a bug bar with teams to help them

prioritize usable-security-related work items.

5. CONCLUSION
Our NEAT guidance is now in use by product teams at Microsoft.

We often teach NEAT to interested engineers. We have a class on

NEAT and how to apply it. That hour-long class contains lots of

examples and explanation beyond what’s in this short note. We

find that engineers remember the acronym, or at least remember

that there is an acronym. In any case, our guidance and training

have raised awareness of usable security at Microsoft. The NEAT

guidance is a scalable way for us to share our expertise in usable

security with product teams, as it gives them an easy way to

remember and apply knowledge from usable security research.

A key lesson we’ve learned in our experience with NEAT is that

to integrate usable security (or any discipline) into the software

development lifecycle, it is important to make it as easy as

possible for busy engineers to follow the advice we give them.

There is great value in translating the results from research

experiments into actionable takeaways for engineers. NEAT,

along with its associated materials, has been a great first step in

helping engineers deliver more usable security.

