Think Evil[®] The Security Mindset

Nicholas Weaver International Computer Science Institute

Introduction

- This tutorial is largely about how *I* think about security problems
 - And is an attempt for me to understand why I think the way I do
 - ➡ Your mileage will vary
- This tutorial is very anecdote-centric
 - ➡ They make excellent examples
 - Exposure to many different stories is how I learned to think this way

Disclaimers

Think Evil®

- Although my research is sponsored by the National Science Foundation, all opinions are my own and not of any funding institution
- Thinking in this way can be, well, bad for your long term mental health:
 - "The problem is that there is no one arranging meetings where you can stand up and say 'My name is Sam and I'm a really suspicious bastard'" -Terry Pratchett

The First Story: Casino Cheating

Think Evil[®]

- Most casino games are *random* and *independent*
 - Winning is based on a true random process
 - Both odds of winning and payout are *independent* of history
 - The odds of winning at Roulette: 1 in 38
 - The payout on winning a \$1 bet: \$36 (including your \$1 back)
 - ➡ Expectation value: 36 * (1/38) = .9474
 - ➡ House advantage: 5.26%
 - "No one can possibly win at roulette unless he steals money from the table while the croupier isn't looking." — Albert Einstein
- A casino can *only* work when the house advantage is positive
 - Otherwise, it will lose money over time
- Cheaters can *only* prosper when they can destroy the house advantage
 - But cheaters don't have to abide by the rules...
 - And money is on the line...
- Thus there can be *no* agreement between cheaters and casinos: The two groups have goals which are completely opposed

But not all casino games are *random* and *independent*

Nicholas Weaver

- Some games have *history* on the jackpot size:
 - Progressive slots and video poker

- Jackpot increases with each time any player in the pool does not win
- Such games may have positive expectation value for *individual* bets
- EG, a 3 wheel random slot machine with 30 positions per wheel, and just a single progressive jackpot
 - Odds of winning the jackpot: 1 in 30³
 - Thus if the jackpot is greater than 27,000x the amount bet, the better's expectation value is >1
- Such games *do not* affect the house's profit
 - ➡ The growing jackpot is funded by a *fraction* of the house's winnings
 - For the expectation to become positive, a lot of people bet when the expectation was negative

But some games have *history* on the odds of winning

Think Evil[®]

Nicholas Weaver

- If a deck of cards is *not* reshuffled after each hand, subsequent hands are affected by history
 - Baccarat and Blackjack
 - E.G: the first hand has 2 aces played: Now all subsequent hands will not have these cards

• Players can change their bets based on history

- Thus if the odds are favorable, the player can bet more, and can even walk away if the odds become too unfavorable
- Which potentially allows a player to gain an advantage over the casino

Edward Thorp Beats The Dealer

Think Evil®

- Edward Thorp was a MIT mathematician in the 1960s
 - Realized both of the previous observations
 - Realized that with access to a computer (IBM 704) he could develop strategies and run trials
- Developed the basic systems behind card counting for both Blackjack and Baccarat
 - Easy ways to track what the deck odds are
 - Betting strategies to take advantage of shifting odds
 - Converts a 5% house advantage into a 1% player advantage
 - This is completely intolerable for a casino: a casino which allows a player advantage will become bankrupt
- Eventually wrote the book on the subject:
 Beat the Dealer

Defending against Card Counters: *Recognition* and *Response*

Think Evil[®]

- A card counter must have a predictable pattern of play
 - Otherwise, the player will not be able to take advantage of when the odds shift in the player's favor
- Thus the Casino can count cards too...
 - ➡ Can distinguish the *Lucky*
 - A lucky player is good for the casino: luck doesn't last forever
 - A lucky player's behavior is not correlated with the state of the deck
 - From the Card Counter
 - A solo card counter *must* change his bets in response to the state of the deck
- Now simply kick the card counter out of the casino...
 - Card counting may be *legal*, but they do not have to let everyone *play*: A casino can simply kick out a successful card counter

A Defensive Theme: Pattern Recognition

Nicholas Weaver

- Many defenses rely on recognizing something as *good* or *bad*
- Anti-virus systems:

- Recognize the patterns of *known* viruses
 - Now we can block the bad
- Host-based IDS:
 - Recognize the behavioral pattern of known programs
 - Now we can only allow the good
- We need to be able to both *define* good or bad and *recognize* future instances

Defending Against Card Counting: Changing the Rules

Think Evil®

- Using more decks makes it harder to card count
 - ➡ More information to keep track of
 - ➡ Odds shifts are considerably smaller
 - ➡ And the odds have to shift greatly for card counting to pay off
- Reshuffle the deck more often
 - Destroy all history and resets the card counter's job
- Defenses interact synergistically
 - Reshuffling plus more decks combines to make the problem of counting significantly harder

A Defensive Theme: Change The System/Add Constraints

Think Evil[®]

- In many areas of computer security, the defender controls the rules of the game
 - ➡ The network operator can say what does and does not run on his system
- Changing the basic system can change the entire threat model
 - Windows XP before Service Pack 2: Many network services are on by default and accessable from any remote system
 - Windows XP SP2:
 All network services are off by default and, even when enabled, often only accessible from the local network
- Resulting change has a huge impact on the attack surface: the ways an attacker can compromise a Windows Desktop.

Defense against card counting: Tolerate it (within limits)

Think Evil[®]

Nicholas Weaver

- A *bad* card counter plays worse than a generic player
 - A generic player has a -5% advantage, if bad play swings this to -6-7%, the house is very happy
 - ➡ And it is easy to mess up
 - And even a "not quite perfect" card counter might not beat the house advantage:

As long as their expectation value is still negative, such card counters are *good* for the casino

- So unless the card counter is *winning*, let him continue to count cards!
 - And if your ratio of bad card counters to good card counters is high enough, just don't bother at all!
 - ➡ The casinos thrive when people *think* they can beat the house

Defensive Theme: Tolerance

Think Evil®

- Sometimes its not worth putting up defenses:
 - ➡ "You don't put a \$10 lock on a \$1 rock"
 - Sometimes the most cost effective defense is to simply not bother
- Its actually quite common in everyday life
 - I will personally happily leave a \$7 paperback sitting on the table at my local Peet's coffee...
 - → But I will not leave my laptop!

The MIT Card-Counting ring

Think Evil[®]

- A key insight:
 - Casinos are looking for *individual* card counters, but players can join and leave tables at will
- Thus the MIT ring developed *collaborative* card counting:
 - One player at each table plays "basic strategy" (-5% a bet expected return) for low stakes, but keeps track of the count
 - When the count becomes positives, a "whale" joins the table and bets heavily
- Became the subject of the book *Bringing Down the House*
 - This technique is still reportedly in use by other card counting rings: and it is *legal*

Attacker Theme: Attacking Pattern Recognition

- If you know the defender is looking for particular behavior, adapt your attack accordingly
 - Mimicry: If the defender is looking for known good behavior, make your bad behavior look like the good behavior
 - Mimicry attacks against host-based intrusion detection systems
 - Evasion: If the defender is looking for known bad behavior, make your bad behavior look different
 - ➡ Polymorphic/encoded viruses are an evasion attack on antivirus systems
- Mimicry and evasion are common problems with many (but *not all*) pattern based defenses
 - The goal is defenses with *complete* coverage:
 E.G. If all paths of an attack are covered, *evasion* becomes impossible

General Theme: Reaction time

Think Evil®

- Part of the reason the MIT ring was so successful was its *novelty*
 - The casinos had not expected distributed card counting
- It always takes time to *react to changes*:
 - Until the casinos change how they react to the threat, the problem remains
 - If your opponent has limits on *adaptability*, exploit them...

Defensive Theme: Cooperation and Communication

Think Evil®

- Casinos are not independent, they actually cooperate on many security problems
 - ➡ Communicate list of people to watch out for
 - Bulletins about new strategies and tactics
- Once one casino learns about a new problem, all casinos may know about the problem...
 - Even if someone is your competition in *other* areas, it often pays to cooperate for security
- Thus the defender is not just an individual entity, but may be a collaboration of multiple entities
 - ➡ Information sharing can be a very powerful defense

But what about Roulette?

- How to steal from the Roulette table: After the ball has landed in the slot, just change your bet!
 - ➡ Known as "*pastposting*", and represents a major threat
 - ➡ After all, Einstein says you can win at Roulette this way...
- In the early 90s, a company introduced a "no pastposting" roulette table:
 - ➡ An alarm would sound if a player encroached on the play area
- So what is a roulette pastposting gang to do?
 - Richard Marcus's (a self proclaimed casino cheat's) Solution: Trigger the alarm, repeatedly!
 - http://www.richardmarcusbooks.com/downloads/19-20%20tech.pdf
 - The gang members act like drunken idiots, passing items over the table during play
 - Repeatedly sets off the alarm until the casino pit boss just turns it off
 - Once the alarm is turned off, then steal the table blind...

Attacker Theme: Malicious False Positives

Think Evil®

- If a defense is triggered when there is no attack, this is a *false positive*
 - If an attacker can trigger this, you have malicious false positives
- Many uses for malicious false positives
 - ➡ Get a system deactivated due to frustraction
 - ➡ Distract attention from the real target
 - ➡ Cause damage due to the defenses themselves
 - Reactions have a cost: the attacker may simply wish to cause the defender to face these costs

But why not just corrupt the dealer?

Think Evil®

- If you're "friends" with the dealer, who says things have to be random?
- Many ways for a corrupt dealer to cooperate with an accomplice:
 - On Blackjack: The dealer needs to check if he got a blackjack when an ace is showing Dealer behavior can signal this to an accomplice at the table
 - Accomplice can then do an "insurance" bet
 - On Blackjack or Baccarat: The dealer switches the deck with a prepared deck
 - This attack can be *deadly*, as a whole table of accomplices gets incredibly "lucky": Very high risk but very high reward
 - On just about any game: Just be "stupid": miss cheating attempts such as switching chips, late bets, or other behavior

Attacker Theme: Insider Attacks

Think Evil®

- The *insider attack* is often the most insidious:
 - ➡ Insiders *must* be trusted, the attack is a betrayal of trust
 - ➡ Insiders *must* have detailed knowledge of the system
 - Insiders are *people*, with all the human weaknesses
- Casino cameras have to watch the dealers as much as the customers
- Why do you think Costco, Fry's, etc check receipts at the door?
 - Its to prevent a cashier from colluding with a customer to sell a big-screen TV as a can of Coke...

But Roulette Tables are Getting Smarter

Think Evil[®]

- Some casinos are experimenting with RFID (Radio Frequency ID) casino chips
 - Each chip has a unique serial number and RFID chip
 - ➡ The table can use this to monitor where every chip is on the board
 - Can also monitor, in real time, who has what
 - Also makes forging chips considerably more difficult
- Now the roulette table can directly detect pastposting
 - By keeping track of when each chip is added or removed
 - Can detect otherwise very hard to detect moves
 - Such as placing a stack of chips with an almost hidden high-value chip, which is swapped out with a only low-value stack on failure
 - Because most croupiers and cameras are looking for people adding bets to winners, not switching bets on losers

But Einstein Was Wrong, You CAN Win At Roulette...

- Thorp also observed that Roulette is *not* a random process...
 - ➡ IF AND ONLY IF bets are allowed after the ball is spun on the wheel
- Collaborated with Claude Shannon to develop a Roulette-tracking wearable analog computer in 1961
 - Toe switch to input data, earphone for output
- Idea:

- Track the velocity and phase of the rotor and ball
 - Measure by clicking the switch when the rotor and ball pass certain points
- Tone indicates what octant the ball was most likely to hit
- Amazingly effective: >40% player advantage in both the lab and the casino!
- "The Invention of the First Wearable Computer", E. O. Thorp

The Casino Responses...

Nicholas Weaver

- "Place your bets" and *then* spin the ball
 - Restores randomness to the game, if the casino does this
 - Not all casinos do: there was a case in 2004 where this technique was employed using a laser-scanner "cellphone" <u>http://www.guardian.co.uk/science/2004/mar/23/sciencenews.crime</u>
- Change the law:

Think Evil®

- In 1985 (when such devices were becoming far more common) an emergency measure was passed in Nevada: Using a technological device to aid in gambling is a felony
 - Target was not just roulette computers but easy-to-use Blackjack counting computers
- This grossly changes the stakes for cheaters who get caught
 - Many more potential "cheaters" still want to operate within the law: It changes the *costs* involved in cheating

Defensive Theme: Change the attacker's costs

- Attackers have many costs in their attack...
 - Not just the cost of the attack, but the cost of being caught factored into the probability of being caught
- Anything which changes the attacker's cost model may dissuade attackers
- Also there is a "Bear Race" factor
 - "I don't need to outrun a bear, I just need to outrun the guy I'm standing next to."
 Make attacking *you* more difficult than attacking your neighbor

Outline

- People, Ideas, and Technology...
 - Strategy and Tactics
 - Adversarial modeling
 - Informal
 - ➡ Formal (OODA loops)
 - Attacking decision cycles
- Constraints & End States
- Applications:
 - Internet Service Providers vs Peer to Peer systems
 - ➡ Worms, Viruses, and Things that go Bump on the Net
 - Personal protocols to protect my finances
 - ➡ Why High Finance must fail

"People, Ideas, and Technology... In That Order"

Think Evil®

- Col. John Boyd, US Air Force
 - Developed the Energy/Maneuverability theory
 - The mathematics behind fighter-aircraft operation: Provides a single-graphic view of airplane performance based on how quickly it can add and dump energy in maneuvers: based largely on thrust/weight and drag
 - The leading force behind the F16 and F18
 - Developed much of the modern military theory of conflicts: the OODA loop process
 - ➡ This is one of his more famous quotations
- In all the casino examples, technology was an enabler, but it was human behavior that is key

So some thoughts about people

Think Evil®

- People are self-interested
 - They usually act in what they perceive as their self interest
- People are motivated
 - They know what they want and they will try to get it
- People are adversarial
 - ➡ When self interests collide, you get a conflict

People are self interested

Think Evil[®]

- People *usually* act in their self interest
 - ➡ If they understand their self interest
- "The universe runs on a mix of energy, matter, and enlightened self interest"
 - -G'kar
 - Of course, every individual's definition of self interest may be different:
 EG, my primary self interest is to enjoy what I do
 Somebody's interest on wall street may be to make lots of money
- Your opponent's self interest often dictate their strategy and tactics
 - EG, the authors of malcode for profit (interested in money) behave very differently from the authors of malcode for espionage (interested in information belonging to specific parties)

People are *motivated*

Think Evil[®]

- Self interest leads to *motivation*:
 Once people know what they want, they will try to get it
 - → Within the constraints which they will operate

Level of motivation varies: I'm rather lazy: do the *minimum* needed to accomplish my objectives Others may be ambitious

 Once you understand the participants self interest and level of motivation, their objectives should be (reasonably) clear

People are *adversarial*

Think Evil[®]

- If *your* self interest opposes someone else's self interest, competition may be inevitable
 - It can be subtle and normal: Economics is all about competetion and adversarial behavior
 - It can be overt and illegal: Criminal adversaries

• This *creates* conflicts:

- ➡ Do the different parties have different self interests?
- This can also *diffuse* conflicts:
 - Can you change the system so that different parties' self interest *aligns*?

Strategy

Think Evil®

- The high level techniques for accomplishing a particular goal
 The high-level Why of the conflict
- This is usually centered around the interest of the parties:
 What is their overall objective?
 What is their level of motivation?

Tactics

Think Evil®

- The detailed techniques and tools needed to accomplish a local goal
 - ➡ The low level *how* of the conflict
- This is centered around the motivation of the participants:

How to achieve the actual objective

Some thoughts....

Think Evil[®]

- We need to work on problems on *both levels*
 - ➡ Tactics require a strategy to be useful
 - Strategies require tactics to implement
- Often, strategy is an effective lever
 - Disrupt the *why* of the conflict: What is the other guy's interest and objectives? Can we change how these operate?

Adversarial Decision Making

Think Evil[®]

- The goal is to not *beat* your opponent but to *drive him insane*:
 - ➡ If you can beat his decision making you should win
 - ➡ For an organization, destroy their decision making process
- So how can we model adversarial decision making?
 - If we want to realistically attack the opponent's decision making, we need to reason about it clearly
- The informal model: Your Evil Twin
- The formal model: The OODA loop, developed by Col. John Boyd

The Less Formal Model: Your Evil Twin

Think Evil®

- You need to model an adversary who's as resourceful, as creative, and as innovative as possible
 - You can dumb down your opponent later should conditions warrant, but it is best to assume an opponent who is too *smart* rather than too *stupid*
- If you can model an adversary who is *more* resourceful, creative, and innovative then you are...
 - Simply run that model and *become* that person
- Thus the most sophisticated adversary you can actually model *is you* (or your evil twin)

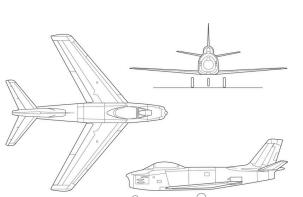
Understand Strategic Objectives *First*

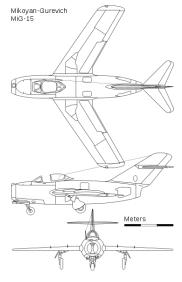
Think Evil[®]

- What is the *interest* and *objectives* of your evil twin?
 - Or various evil twins
 - Empathize with your evil twins...
 - ➡ Does he want to make money?
 - Does he want to learn your secrets?
 - Does he just want to see the world burn?
- What role does he play?
 - ➡ Is he an Internet Service Provider?
 - ➡ Part of a criminal conspiracy?
 - ➡ Working for the Chinese government?

Then Define **Resources** and **Constraints**

Think Evil[®]


- How much resources does your evil twin have?
 - ➡ Lone wolf: Your evil twin in the basement
 - Criminal syndicate: A support network of some money and others
 - Nation-state employee: A full *clone army* of evil twins with millions of dollars in backing
- Are there particular constraints?
 - ➡ Does he need to obey the law?
 - ➡ Does he need to worry about public opinion?


Only then focus on tactics

- The other constraints can define what tactics may or may not be acceptable:
 - If your evil twin's objectives require legal behavior, only some tactics are in play
 - Available tactics also depend on the position/abilities
- Its a mistake to rathole on tactics too early
 - Why try to defend something which the probable attackers wouldn't care to do?

The F-86 vs MiG 15 puzzle and the origins of the OODA Loop

- Boyd was an F-86 Saber pilot during the Korean War
 - In the Korean war, the F-86 proved superior to the Russian MiG 15
 - ➡ A claimed 10:1 kill ratio!
- But based on the physics of the aircraft, the MiG is far superior!
 - 20% better! thrust/weight ratio
- So why did the F-86 do so well?
 - Part was doctrine and training: US pilots were more experienced and used better airto-air tactics
 - But a major factor was "user interface"

The F-86 and MiG 15 User Interfaces

- Think Evil®
 - Partially, the MiG had an inferior canopy
 - Less visibility: The pilot sat lower in the plane and there were more obstructions in the view
 - But a very big factor: the MiG's controls were inferior
 - The F-86 used hydraulic controls: a light pilot input is sufficient to turn the plane
 - The MiG 15 used cables: The pilot provided all the force needed to move the control surfaces
 - Thus in a turning fight, the F-86 had a huge advantage:
 - ➡ The *pilot* required less effort to make a *series* of maneuvers

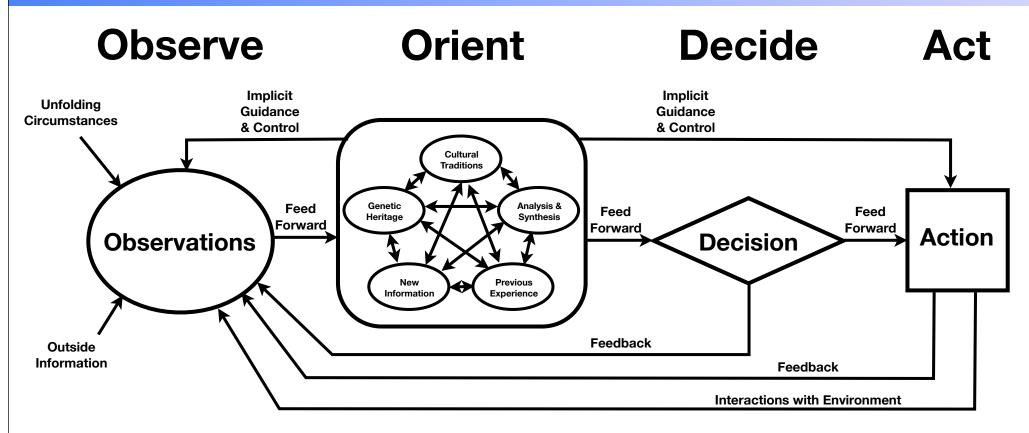
Agility

The F-86 had a huge advantage in pilot agility

- The ability to rapidly change behavior/positions/tactics in response to how a dogfight unfolded
- ➡ This compensated for worse agility on the plane
 - Because the MiG had vastly more thrust, it could regain lost energy much faster
- Boyd developed agility-centric air-to-air tactics as a flight instructor
 - ➡ But how to apply this to general decision making?
 - How do people and organizations come to a decision?

John Boyd's Insights...

Think Evil[®]


Nicholas Weaver

• Key insights:

- There are multiple processes in creating a decision
- Decision making composes: You can treat an organization as a single entity composed of individual entities
- There are *fast paths* and *slow paths* in the decision making process
- If you can develop a model of how opponents think, you can then attack the decision making cycle directly
- Developed the "OODA Loop" (Observe, Orient, Decide, Act) to describe the decision making process
- Developed a theory of "Moral Conflict" on how to attack the decision making process

The OODA Loop

Think Evil[®]

Observation

- Observations are the data input into the system
 - How do you collect information on what's going on?
- Eyes, sensors, messages, etc...
- Without *accurate* and *timely* observation, the decision cycle turns inward
 - ➡ And ends up breaking...

Orientation

Think Evil®

- Orientation describes the *implicit* decision making processes
- For an individual
 - Instinct, reaction, training, history, the "snap decisions" which occur all the time
- For a composite entity
 - The decentralized decision-making process, where individuals don't need to cooperate or coordinate, but just do
- Orientation is the *fast* path

Decision

- The decision process is the *explicit* decision making
 - If you have to go "I need to think about it...", its an explicit decision
 - In an organization, this usually involves consensus or discussion
- Explicit decisions are the *slow* path
 - As soon as you have to make an explicit decision, things grind to a halt
 - Especially true in organizations

Action

Think Evil®

• Actually *do* something...

- In many ways, the *least* interesting part of the decision cycle is actually doing anything
- There are plenty of constraints on actions, which we will discuss later...

Communication

- In Boyd's model, communication is an *implicit* set of connections
 - ➡ Its an action to send messages
 - Its an observation which receives messages
- Its often best to think of communication explicitly:
 - Messages take time, they may be unreliable, etc...
 - Properties of the communication medium and the organization
 - Communication media are resources as well

Automation

- Automated decision cycles occur all the time
 - Worms and malcode are automated attacks which require automated defenses
- Automation is an even *faster* decision cycle
 - Anything involving human vs automation: Automation wins the race.
 - Distinction between "Orientation" and "Decision" disappears:
 - There are no clear cut "Fast path"/"Slow path" distinctions for automated decision systems
- Some security problems can *only* be addressed with automated decision cycles:
 - If the attack is automated (eg, a worm), reactive defenses (those that detect and respond) must also be automatic

Composition

Think Evil®

- An organization or suborganization has its own meta-OODA-loop
 - Representing the organization's overall decision making
- Much work in how to construct these organization well:
 - Delegation of responsibility and "mission based orders": Each individual and small group knows both their individual task and overall objectives
 - Minimize the amount of *explicit* decision making needed
- *Many* ways to construct these *poorly*:
 - Micromanagers eliminate delegation of responsibility and add needless explicit decision making
 - The "Yes Men" phenomenon: Incestual Amplification

Attacking Decision Cycles

Think Evil®

- If you can drive your opponent mad, you will win
 - So the goal is to disrupt their decision cycle: Make it so they can't come to the right decision or, better yet, a decision at all!
- But at the same time, we must strengthen our own process
 - Otherwise, of course, we might lose

What Boyd wants to create in the opponent...

Think Evil[®]

- The foundation of *moral* conflict:
 - Conflict waged directly on the decision making process of the opponent
- Menace:
 - ➡ The impression of danger to one's well-being and survival
- Mistrust:
 - ➡ An atmosphere of doubt and suspicion
- Uncertanty:
 - Events that appear ambiguous, erratic, unfamiliar, etc...
- Causes opposing individuals and groups to become non cooperative:
 - ➡ Breaks down their operational structure by increasing *friction*

But at the same time, strengthen our own institutions...

Think Evil®

- Counter menace with *initiative*
 - The ability to take action without being urged and under stressful conditions
- Counter mistrust with *harmony*:
 - Create friends and influence people
- Counter uncertanty with *adaptability*:
 - You can't always be *certain*, but you can always be adaptable

Speed

Think Evil®

- Now with those themes...
- If all else is equal, a faster decision cycle is more adaptable
 - Can react to unfolding circumstances more quickly
 - Increases adapability
 - Can create unfolding circumstances more quickly
 - ➡ Creates uncertanty in the opposition
- But this is **only** if all else is equal
 - Getting the wrong answer fast still gets you just the wrong answer...

Accuracy

- We still need to get the right answer
- Often the key is observation and data input:
 - Without accurate data, how can you reach an accurate concusions?
 - Forces a large emphasis on data collection and data analysis
- Thus a common theme of deception:
 - ➡ Its a direct attack on the opponent's accuracy

Constraints and End States

Think Evil[®]

- Competitions are *not* freeform: they occur within constraints
 - The ability of competitors depends on the constraints in the system
 - ➡ Constraints act to limit the possible actions
 - ➡ Money is a constraint
- Constraints and technologies can drive portions of a conflict to *end states*:
 - A tactic or technique will become ineffective to the point of uselessness

Constraints

Think Evil®

- Constraints limit the freedom of action
 You can't just do *anything*, it must be actually *possible*
- Understanding the constraints is necessary to understand the form of the competition
 - ➡ Constraints act as a limiter of possibilities
- But understand that some asserted constraints aren't:
 - EG, what happens if an attacker can break into your machine room?

Constraints of Physics

- The most basic constraint: The speed of light
 - A related limit: the speed of communication on a network
 - Acts to limit some defenses
- But systems have "Physics" too:
 - E.G. an ARM processor runs ARM binaries: you can't run x86 code on an ARM without an emulator
 - Therefore, attacks which rely on x86-specific behavior won't work on an ARM platform

Constraints of Law and Public Opinion

Think Evil®

- Some adversaries *must* work within the law
 - Businesses need to be legal to survive
 - Others strictly do not care, such as criminals
- Public opinion may be as important as legal constraints
 - Negative public opinion can result in draconian legal restraints being added
 - ➡ Negative PR can be costly on its own merits
- Your adversary's position dictates available actions

Adding Constraints

Think Evil[®]

- Constraints are a great *preventative* defense
 - If you control the environment, constraints can limit an attacker's actions
 - ➡ Firewalls, software restrictions, etc...
- A significant area for usability research:
 Adding constraints to a system
 - Is it possible to make a system such that users *can not* perform exploitable actions, yet still be usable?

Cost is a Constraint

- *Nobody* has unlimited resources:
 - Time, money, people, opportunity, all are limited
- All parties must spend their resources wisely
 - It often includes knowing when *not* to secure something: "You don't put a \$10 lock on a \$1 rock" After all, who would steal the rock *10 times*?
- Money is a good metric for the other resources
 - ➡ "Time is money" has a corollary: "Money buys time..."

Consider the money limit...

Think Evil[®]

Nicholas Weaver

• When Steve Trimberger at Xilinx designed their FPGA copy protection...

Targeted adversaries *only* willing to spend less than \$100,000 to copy a design in an FPGA

- Steve assumed it would cost roughly \$100K to bribe an engineer to get a copy of the design
- So why devote resources to technical defenses which might require \$500K to defeat, but could be evaded with a \$100K bribe?
- Likewise, a *captcha* is *not* about determining that someone is human...
 - Rather it is a way of determining that the user is human *or* the user is willing to spend \$.0025 or so to *appear* human
 - Thus a captcha can only defend a resource which is worth less than that to an attacker
 - It works to keep blog spam off of most blogs
 - ➡ After all, the Google Adwords are less expensive
 - It doesn't work to stop scalpers at TicketMaster

End States:

- Not all tactics work forever:
 - We no longer see mounted knights across the field of battle
- Technologies evolve and can result in the extinction of tactics:
 - Evolving the system towards an *end state*
- End states often favor one side or the other

Complete End States

Think Evil[®]

- Some lines of tactics can evolve to a complete end state:
 - Attacker or defender is effectively stuck unless the basic technology somehow changes
- Happens quite often:
 - E.G. buffer overflow attacks can't be used against programs written in bounds-checked languages
- If an end state favors you: push development towards the end-state
- If an end state favors the adversary: Don't fight this battle...

Effective End States

Think Evil®

- "Malcode Wars are not won by solving the halting problem.
 Malcode wars are won by making the other poor bastard solve the halting problem."
 - With apologies to George S Patton
- Some end states are *not* guarenteed, but are so much harder for one side or the other:
 - Unfortunately for Symantec, "Virus Detection" is the halting problem, thus signature-based detection of malicious code (classic antivirus software) is a losing battle
 - Thus I'm not interested in writing AV software, or tools to automatically analyze Javascript to detect potential malice

The Rest of the Tutural: Applications and Case Studies

Nicholas Weaver

- ISPs, Content Providers, and Peer to Peer Technology
- Worms, Viruses, Bots, and Things that go Bump on the Net
- How I Protect My Wallet

Think Evil[®]

• Why Wall Street Can't Work

A Current Conflict: ISPs vs Content Providers vs Customers

Think Evil[®]

Nicholas Weaver

- The ISPs objective:
 - Provide an acceptable level of service to the customer while maximizing the ISP's profit
 - Commonly in a *duopoly*: there exists competition between ISPs but it is somewhat limited
 - Also constrained by other businesses:
 Almost every major ISP is either a telco that wants to be a cable company, or a cable company that wants to be a telco

• The customer's objective:

- To get the *desired content* in a way which minimizes the customer's cost
 - Convenience, hastle, and legal risk are all costs
 - Different customers weight these costs differently
- The content provider's objective:
 - To provide *paying* customers with their desired content at the minimum cost to the content provider
 - ➡ To limit the impact of piracy

My Perspective In This

Think Evil[®]

- As a researcher developing tools to *understand* ISP behavior
 - Detecting P2P interference using injected RST packets
 - Developing tools to probe large suites of behavior
 - Obligatory plug: http://netalyzr.icsi.berkeley.edu
- As a *rational*, lower-bandwidth customer
 - I pay for the high bandwidth service, but I'm rather low in GB/ month
- As someone who wants to *diffuse* potential conflicts
 - ➡ Driven from the *informal* model: *empathize* with all sides
 - Develop technologies that can unite competitor's strategic goals

Round 0: Old School FTP Warez

Think Evil®

- Warez (pirated PC games) were spread on FTP sites and dialup bulletin boards in the 1990s
 - ➡ If you knew the login, you could get the pirated games
 - EG, a friend's mother's university account supposidly hosted an FTP site with a GB of pirated games...

Bandwidth issues:

- ➡ This was not cheap, and sources were identifiable
 - Criminal charges were filed against participants
- Of consequence, only a limited # of participants
 - ➡ Closed world piracy: small communities of pirates
 - Annoying but tolerable for content providers: Limits the number of participants

Round 1: The Rise of Napster...

Think Evil[®]

- Napster was a peer-to-peer program for sharing music files
 - Users could make public their folder full of MP3s and copy them between users
 - Became available in 1999
- Addressed a huge gap in the available software:
 - Made it much easier to find and obtain music online
- Enabled open world piracy:
 - Rather than having to know someone to get a piece of content, allows arbitrary users to find pirated content
 - But limited to small files: music rather than video content
- Open-world piracy is much more dangerous:
 - Lowers the barrier to entry for those wanting pirated content
 - Lower barrier to entry means that otherwise paying customers may become pirates

The Content Provider's Response: The Court System...

Think Evil®

- Content providers sued Napster for contributing/ enabling copyright infringement on the part of the users...
 - And won, bigtime
- Napster effectively shut down when an injunction was granted which *required* Napster to prevent the sharing of copyrighted files
 - Since Napster controlled the index for the files as well as the software
 - Napster concluded "We can't do copyright enforcement, so we'll just shut down our index servers..."
- But it was too late...
 - Customers grew to like open world piracy
 - Which meant new P2P software could try to profit from it...

The P2P Software Provider's Response: KaZaA

Nicholas Weaver

- Several software providers observed there is (potential) profit in building P2P software
 - Usually by bundling sleazy adware and similar items in the software package
 - But the Napster lawsuit showed that such software is unlikely to survive a court challenge
- Solution: Incorporation-shopping

- Sharman Networks incorporated in Vanuatu! and headquartered in Australia
- If you can't be sued if you don't have a business presence (hopefully)
 - This is an example of *jurisdictional arbitrage*: taking advantage of differences in law rather than differences in price
- Eventually failed, but the decision cycle is *slow*
 - In many ways, both sides lost: Sharman didn't make the pot of gold The RIAA didn't stop the piracy

The rise of iTunes Store 2003

Nicholas Weaver

• A *new* content provider model:

- The record labels would not agree amongst themselves to sell music online
- But they were willing to license content to Apple and others
- Created a new set of *intermediaries*
 - Unfortunately for the RIAA, it allowed these intermediaries to become more powerful
- Showed that *paid content* can be profitable
 - DRM used to reduce uncertanty
 - But made the content less desirable to many users
 - Many users view illegality as a *cost*:
 Legal content *can* compete with illegal content
 If you lower the total *costs* of getting legal content
 - Ease of use is a cost

The best content provider response to date: *Hulu*, *Netflix*, etc...

Think Evil[®]

- It is critical to *not* just make infringing content more difficult to obtain, but to provide a *legal alternative*
 - Users will pay for content: either directly (iTunes, Netflix Streaming) or through advertisements (Hulu)
- But this is not free: Content delivery costs money
 - \$.10/GB for Amazon
 - ➡ ~\$.20/GB? More? for Akamai
 - Akamai provides a lower-latency service
- And it all adds up:
 - ➡ 1 hour HD video == \$.10... Times ten million views...
 - Credible estimates suggest that YouTube costs \$300M a year in bandwidth bills...

The Rise of BitTorrent

Think Evil[®]

- BitTorrent's developers realized the *real* weakness of Napster and Kazaa: the *combination* of content deliver and seach
 - ➡ Search engines alone are legal
 - Content delivery protocols are legal
 - So focus solely on content delivery
- BitTorrent optimized for delivering *large* files:
 - ➡ A *tracker* keeps an index of who is participating in a *swarm* of peers
 - Individual peers keep track of which content other peers have
- Splits responsibility:
 - ➡ Splits content discovery (the Pirate Bay) from content delivery
- Removes the bandwidth costs:
 - Shifts the delivery cost from the (pirated data) provider to the recipients
- Provides a significant non-infringing use for legitimate content providers

Bulk Data P2P As Cost Shifting

Think Evil[®]

- Bulk Data P2P (BitTorrent etc) offers a way of *shifting* the cost of content delivery from the content provider to the content recipients
- **Necessary** for piracy of large files: Individual users lack the bandwidth or the money
 - Enables open world piracy of large files: Without this, anyone who tries to share a large file is going to see crippling bandwidth bills: How many pirates will pay \$10,000 to share 1GB with 100K other pirates?
- Useful for legitimate content providers: Allows the content provider to shift the costs to the recipients of the data
 - CNN sees a 30% reduction in bandwidth costs for their P2P streaming browser plug-in vs conventional content delivery
- BitTorrent's basic idea can be adapted to streaming video:
 - The key observations are that: The blocks of transfer should be individual frames and small groups of frames The most-desirable blocks for a client depend on where it is in the video stream

But now ISPs Grew Concerned

Think Evil®

- Music files are relatively small: Even a really REALLY committed pirate will only transfer a few GB
 - ➡ But video files are *huge*: A single hour may be a GB or more
- And ISP bandwidth cost is considerably more than content provider bandwidth cost
 - It always costs more to bring 1 Mbps to 100 places than 100 Mbps to 1 place
- And ISPs were seeing congestion effects in their network
 - Comcast was *falsely* accused of disrupting Vonage's VoIP service. The real cause was probably bittorrent-related congestion on the shared cable-modem uplinks

Thus P2P is Inefficient Cost **Shifting**, not Cost **Saving**

Think Evil[®]

- Bulk-data P2P doesn't reduce the amount of data transferred
 - One copy downloaded, one copy uploaded per customer
- But ISP bandwidth *must* cost more than content provider bandwidth:
 - Content providers can be optimally located
 - ISPs are *always* suboptimally located
 - And its far less expensive to bring 100 Mbps to one location than 1 Mbps to 100 locations...
- Cable systems in particular are vulnerable:
 - For them, the last mile is very costly: Every Mbps to a customer represents bandwidth that could be used for a TV channel
 - ➡ DOCSIS actually encodes the downstream data in MPEG "frames"
 - → The uplink is *more* costly because its less efficient
 - ➡ A few P2P users can clog a neighborhood with long lived flows
 - Thus a perfect P2P system will cost a cable ISP significantly more than a normal download
 - ➡ And because ISP bandwidth is more expensive, the aggregate costs are substantially magnified

ISP Reaction #1: Managing P2P traffic

Think Evil[®]

Nicholas Weaver

- Bulk data P2P is trivial to recognize:
 - Its just that, bulk data and peer-to-peer: No data cloaking can remove data or remove peers
 - Traffic analysis: Knowing "Who talks to who", "for how long", "how much data", "what are the patterns in the data" is a very *very* powerful tool

• Once you recognize it, now *do something about it*

- Block some connections:
 Can limit total traffic flow without blocking P2P completely
 - Blocking can be done using injected TCP Reset packets
 - Often it is best to block some *types* of connections: Blocking "seeding" (uploading only) is actually beneficial to most customers, as they usually aren't benefiting
- ➡ Slow some connections:

Put all P2P connections through a synthetic bottleneck and let them fight it out themselves

The Public Reation Was Vicious...

Think Evil®

- "Comcast is forging packets!"
 - Public reaction was more vicious than the ISPs expected
 - Especially since it was done to prevent other public problems!
 - Comcast PR didn't help: initial denials and false statements clouded the issue
 - Their actual implementation was actually pretty good: it only blocked pure upload flows
- Worse, for the ISP, blocking traffic is detectable:
 - The Glasnost project had a web site who's applet behaved like P2P traffic to check for blocking
 - I and colleagues developed detectors for RST injection: able to distinguish injected reset packets (used to block flows) from normal RST packets
- Transparency limits corporate behavior:
 - Even if its legal, they don't necessarily want to get caught
 - Public opinion is now viewed as a huge constraint on ISP actions

So the coming conflict... P2P management

Think Evil[®]

- ISPs are constrained by public opinion:
 Can piss off a few activists, but not everybody
- Content providers are constrained by cost:
 - Your competitors who go with P2P will be spending less money to serve the same number of customers
- Some ISPs are constrained by available bandwidth:
 - Even with DOCSIS 3, cable ISPs have really limited uplink bandwidth, even with perfect localization
 - ➡ Wireless ISPs are really *really* expensive bandwidth

Exacerbating the Conflict: Caps

Nicholas Weaver

- Some landline ISPs have proposed low bandwidth caps (~50GB or less a month)
 - Such caps are significantly anticompetitive:
 Prevents video-on-demand services from being used

- Wireless ISPs almost inevitably have usage limits of ~5 GB with expensive overage charges:
 - Overage charges add *uncertanty*: One of the little secrets of the iPhone: the *data* portion is very consistant and predictable the *voice* portion is reasonable
 - Data is far less predictable for the average user
- I'm happy with high caps (>250 GB), but lower bandwidth caps (~50 GB or less) I view as a huge danger to Internet innovation:
 - Limits the ability of the network to provide competing entertainment and other data-rich services
- But caps are easy to *sell*: Most of the public doesn't realize just how damaging they may be

Diffusing this Conflict: Fairness

Think Evil[®]

Nicholas Weaver

- The first step: limit the *damage* heavy users can do on normal users
 - Heavy P2P users can affect light users by interfering with their traffic
 - Its the result of a mismatch: TCP is "flow fair" over short durations
 P2P is long-duration and several flows:
 - One P2P user can significantly outcompete many interactive users

• Long duration fairness solves this problem:

- ➡ Allows the P2P users to fight amongst themselves, but not affect normal users
- Does not affect the direct cost of the P2P bandwidth, but eliminates many of the externalities of P2P users

• Comcast has switched to a very clever QOS based fairness method

- When there is no congestion, there is no management
- When a network is within 70% of the limit: All heavy users (~50% of rated bandwidth over ~15 minutes) are placed into a lower quality of service category
- ➡ Now under actual congestion:
 - light users experience no effects
 - ➡ Heavy users still receive service as long as the light users alone don't occupy all the bandwidth

Diffusing this Conflict: Edge Caches

Think Evil[®]

- P2P systems can work with *edge caches:*
 - Caches located out of path in the minimum-cost position of the ISP's network
 - They act just like any other node in the P2P system, except they are long lived, high bandwidth, and preferentially serve the ISP's customers
- Unlike HTTP caches, edge caches have deployability advantages:
 - ➡ If they fail, there is no impact:
 - Unreliable means they can be *cheap*: "Disk is cheap, *storage* is expensive"
 - ➡ They are *partially deployable*:
 - ISPs benefit from deployment, but the system still works when they don't exist
- Acts to both minimize externalities and save costs
 - ➡ Now only one copy across the ISP's access network, rather than N copies
 - ISPs see the benefits of caching, content providers see the benefits of P2P, and the customers get their movies...

So Why Focus on Edge Caches?

Think Evil[®]

- Emphasized with all sides on the conflict:
 - Content providers want to minimize cost, and already see a pathway with P2P
 - ➡ As a user, I like Netflix's streaming service but the cost does add up...
 - ➡ ISPs have significant network management problems
 - At ICSI, we've seen what 2 unauthorized P2P users can do to our bandwidth usage
- Look for solutions which would benefit both sides
 - Conflicts don't have to end with both sides losing: The best outcome is if both sides can *win*
 - Which is why I've been focusing some of my effort on what sort of system could be deployed to benefit all parties

The Malcode Wars...

Think Evil[®]

- One of the most pernicious threats to computers is *malicious code*:
 - Programs written to automatically compromise victim systems to further an attacker's objectives
- Many different forms:
 - ➡ Virus: A self propagating program that infects files
 - Worm: A self propagating program that spreads through the network
 - Trojan: A program which exploits the user's system but does not spread
 - Botnet: A program/communications system that allows an attacker to easily control hundreds or thousands of compromised systems

But Malcode *is not the problem...*

- The problem is the *usage* of malicious code:
 - In the 80s and 90s, most malcode was simply for amusement: it didn't necessarily do damage or cost money
 - ➡ Malcode is just *technology*...
- But recent malcode has arisen from two applications:
 - The for-profit botherders: Malcode is now a profitable business
 - The for-espionage botherders: Malcode as a targeted weapon

My Viewpoint

- This is an area of primary research for me Involvement in worm/malcode defense since 2001
- Much of my interest in decision cycles arises from this work
 - Worms operate on non-human timescales: which requires automated defenses
 - Communication and the speed of light matter: Some worm attacks *can not* be blocked with collaborative defenses

Understanding the Problem

- Malcode for Profit:
 - Driven by economic factors
 - "Open" economies vs vertically integrated institutions
 - ➡ Disruptible? by economic and technical factors
 - Economic infiltration:
 The *Dark Market* Takedown
 - Technical infiltration:
 Botnet infiltration
- Malcode for Espionage:
 - Far less visibility, but some: The *ghostnet* experience

The Criminal Economic Underground

Think Evil®

- Criminals are in business to *make money*:
 - "Why do you rob banks?"
 "Because that's where the money is."
 -falsely attributed to Willie Sutton
- But, like all activity, criminals can benefit from *specialization*
 - Don't do everything poorly, do one thing *well*
- But Specialization requires Organization: A way of uniting differing talents

Open-World Economies

Think Evil®

- "Open World" economies: Economic systems with limited/no restrictions on participation
 - ➡ If you join, you're in
- Advantages:
 - Allows the maximum benefits of specialization and entrepreneurship
 - Benefits are greatest when they are largest and most open
- Disadvantages:
 - Easier for the feds to infiltrate
 - Easier for parasites ("Rippers", others who prey on their fellow thieves...)

Vertical Integrated Economies

Think Evil®

- A single affiliated group which integrates the different expertise
- Advantages:
 - Harder to infiltrate
 - Lowers the costs of doing business
 - In house full time experts are generally cheaper than external "consultants", *if* you can keep your experts efficiently occupied
- Disadvantages:
 - ➡ Limits the available expertise

Reputation in Open Economies

Think Evil®

- If you want to be a good criminal, you need a reputation for honesty
 - Just as in eBay, large economies with infrequent pairwise transactions require reputation systems
- Reputation is developed as a property in a community
 - If identities are easy to create, only *positive* reputation systems work
 - Only deal with known "good guys"
 - ➡ If identities are hard to establish, *negative* reputation also applies
 - Don't deal with known "bad guys"
- Open economic systems live or die on their reputation management

DarkMarket.ws

Think Evil®

- DarkMarket.ws was one of the "open world" cybercriminal marketplaces
 - Provide not just forums, but reputation services, marketplace activities, etc
 - ➡ "Your one stop shop for cybercrime" might well be the slogan of these sites
- One of the people with operator status was "Master Splynter"
 - Master Splinter is the sewer-rat sense of the Teenage Mutant Ninja Turtles...
- Over a 2+ year undercover investigation, Master Splynter rose from being a random "spammer" to one of the administrators in charge of the site
 - One of only four major english language marketplaces at the time

Competing Forums and "Max Vision"

Think Evil®

- The problem with large criminal marketplaces is mistrust, uncertanty, and menace:
 - ➡ You can have "Rippers": criminals who pray on other criminals
 - ➡ You can have informants or infiltrators
- Max Ray Butler, aka Max Vision, aka Iceman, had the vision to provide a single unified marketplace as a oneshop stop to address these issues: *CardersMarket*
 - He hacked the **DarkMarket** server and believed that Master Splyntr was a fed based on logged IP...
 - But he failed to convince others of this...
 - Mostly because there is a lot of mistrust of Max Vision: His method was to hack other carder sites, suck down the database, move all the users/import all the data into CardersMarket, then wipe the data from the original site
 - As a result, others claimed Max Butler was a cop!

Both Takedowns Were Successful

Think Evil[®]

- Max Butler was arrested and convicted
 - Causing CardersMarket to go dark, which had previously attacked the other marketplaces
- There was a flurry of arrests of DarkMarket.ws users
 - Master Splyntr posted a "F-the-feds, I'm closing down" message when other admins were arrested
 - But Master Splynter was really J. Keith Mularski, an FBI agent...
 - Who says feds don't have a sense of humor? His name was advertising that he was a rat!
- Put a huge bite out of the English-speaking hacker economy

Takedowns and the Open World Economy

Think Evil[®]

- These takedowns work very well against these open-economies for some players:
 - Feeds mistrust and menace into the system
 - The feds have done this multiple times with multiple marketplaces
- The problem is *regulatory arbitrage*:
 - Don't be a cyber criminal in the United States
 - Unless you are under 18, of course. If you are under 18, just don't hack federal and state computer systems...
 - Don't be a cyber criminal in Turkey if you piss off the authorities
 - Don't worry about it if you are in Russia, Ukraine, India, etc...
 - A general limit of all law enforcement strategies when the crimes are location-agnostic

Open Question: Disrupting the Minnows...

- Not *all* of the criminal ecology is location-agnostic
 - The process of "cashing out" often requires location-based actors, commonly low level mules
 - Bank account owners as "business representatives"
 - Trans-shippers/repackagers who receive stolen goods
 - Amazon won't ship a laptop to the Ukraine, making this an exciting work-at-home opportunity
 - Someone has to ship the Viagra
 - Unfortunately, these tend to be low skill roles
- Open questions: How much can be understood about this portion of the criminal ecology? Is it possible to scare *enough* potential minnows to make a difference? Inject *menace* into that ecology?

Extending *mistrust and uncertanty* to the Bots Themselves...

Think Evil[®]

- Unfortunately, TPM for PCs failed
 - As a result, there is no way to *attest* that the PC really is what it says it is: you can't validate that the code running on the remote system is only the code the author intends
- Good for Botherders:
 - ➡ TPM was supposed to prevent malicious code (ha)...
- But actually really bad for Botherders:
 - There is *no way* for the botherder to have assurance that their bot is running in a pristine environment
- This enables Botnet *infiltration*:
 - The good guys run the bots within contained systems to see what they do: Allows the good guys to directly assess the bad guy's objectives, such as finding out exactly what spam is sent
 - For a non-secured botnet, the good guys have even been able to modify the botnet traffic

End States and Botnet Infiltration

Think Evil[®]

- Detection and counter-detection of botnet infiltration has defender-favorable end states
- Detect good-guy introduced monitoring code:
 - Requires the bad guys to solve the AV problem...
- VM detection:
 - Code can *always* detect that it is running in a VM... But who says our captured bots have to run in a VM?
- Human detection:
 - Is there a human on this computer (with a variety of heuristics)?
 We can always put humans on the computer if we only need one or two bots in a particular botnet
- Network behavior detection:
 - The one open arms-race: detecting whether the containment mechanism exists
- This seems an arms race worth fighting: the good guys have inherent advantages

Malcode for Espionage

Think Evil[®]

Nicholas Weaver

- Once you get a bot running on a victim, you can do whatever you want...
 - So why just send spam? The technology can just as well send secrets
- We have seen the rise of targeted "Malcode for Espionage"
 - The basic MO:

Send an email to your target.

This email contains an attachment that includes an exploit for the program The exploit infects the victim when the attachment is viewed

- "Spear Phishing" with malcode
- The bad guys spend a huge amount of work on "usability" here: The email is forged to come from a known person of the victim The attachments are often specially crafted to be of interest to the victim The attachments are tested against AV programs to avoid detection

The GhostNet Incident

Think Evil[®]

- The office of the Dalai Lama was under attack from targeted malcode
 - In a rare break, they brought in outsiders from Toronto, InfoWar Monitor, F-Secure and Cambridge to investigate
 - ➡ And the researchers were allowed to *publish* their findings
- The bots were controlled through a central web site...
 - With guessable password protection!
- The good guys got onto the web site
 - And saw what there was to see: NGOs, embassies, and lots of other high profile, chinese relevant espionage targets
- Targeted attacks are being *actively used* for espionage

This is a *Tough* Problem

- Attackers are using *novel* malcode:
 - Stopping "Known Bad" doesn't work anymore
 - Billions of dollars of antivirus software is basically obsolete
- Attackers are being *well targeted*:
 - ➡ They know how to target specific individuals
 - ➡ A lot of work on bad-guy usability
- This looks to be a very interesting arms race going forward...

Security in my Everyday Life: My Financial Protocols

Think Evil[®]

- I've developed a complex set of financial protocols for my everyday life
 - How I handle my wallet, my credit cards, my debit cards, etc...
 - ➡ A detailed security analysis went into constructing these protocols
- Designed around a mostly opportunistic adversary:
 - Criminals who aren't targeting me, but rather targeting everybody or anybody
- And designed around minimizing *my* costs in the case of a breach:
 - I don't want perfect security, I just want to be able to stick someone else with the bill
- Focused on *what* to protect
 - ➡ Which dictates the *how*

Part 1: Passwords

- Passwords are a total pain:
 - ➡ They are hard to remember
 - ➡ They are easy to steal
- I try to avoid them when possible:
 - SSH public key authentication everywhere: Also resists some damage from host compromise
 - Making public key systems as usable as possible increases convenience and security
- Otherwise, I write them down *in my wallet*
 - If someone has access to my wallet, they have access to my computer *anyway*

Part 2: Credit Cards

- I'm actually very cavalier with my credit cards:
 - I use them for almost all my purchases
 - ➡ I will use them online, and, if necessary, in email
 - ➡ I take no special care to protect them
- Its not because of the threat of compromise, but because of the *damage*:
 - Initially, it is the credit card company's money that is jeopardized
 - ➡ Why credit card companies have good fraud protection
 - In the end, it is usually the merchant who allows a bad transaction that is responsible
 - ➡ And I have 2 credit cards, so if one dies, the other is still good...

Part 3: Debit Cards

- My ATM card is treated *very* differently:
 - It does not work through the credit card system: it is "ATM only", not a "Visa/Mastercard Debit Card"
 - I had to request this special from my bank
 - ➡ I only use it at physical ATMs which are built into banks or similar
 - I don't want it to get caught in retailer data breaches
 - I physically inspect the ATM for skimmers before using
- Why so paranoid?
 - Until the disputed transaction is settled, it is my money thats on the line, not the bank's
 - Eventually the bank would probably have to make things right, but in the mean time...
 - Driven from an economic analysis of the cost of a breach and a tactical analysis of the attackers' opportunities to achieve the desired data
- Focused on limiting exposure *regardless* of attacker tactics

Part 4: Online Banking

Think Evil[®]

- I don't do online banking
 - I pay a couple bucks a month by sending checks in the mail (dropped in a USPS mailbox):
 - Attacking checks in the mail is O(N) and proximity-limited and high risk
 - Attacking electronic banking through malcode on users' computers is O(1) and proximity agnostic
 - ➡ Which would attackers prefer to do?
 - Or sometimes pay by phone/kiosk with a credit card
 - Get the 1% kickback from the credit card company as a bonus...
- I do very very limited access to my brokerage account
 - Once every few months
 - Active trading is a great way to lose a lot of money quickly
 - Ideally, I boot from an Ubuntu live CD into a trusted-boot environment
- I may try to keep malcode off my computer
 - I run a mac, I use Opera as my primary browser, I keep things up to date... But when it is my money at stake, I have a very paranoid attitude

Why Wall Street Can't Work

Think Evil®

- The Wall Street Firm's Stated Strategic Goals:
 - ➡ The firm should make real, long-term profit
- In order to *incentive* the employees who are motivated by money, employees are compensated based on performance
 - However, effectively all compensation is based on the *appearance* of *short-term* profit
 - Can't compensate based on actual, long term profit on a timescale less than measured: Wall-Street employees does not want to be paid a bonus ten years later
- Competition between firms is often predicated on the appearance of short term profit
 - ➡ Worse: many firms have *innate mistrust* in their corporate DNA:
 - ➡ "You Eat what you Kill": Your competition is in the next office over
- Thus the Employee's Strategic Goal: Appear to be profitable in the short run

My perspective

Think Evil[®]

- Out of necessity
 - I have enough savings that I need to worry about investments, asset allocation, and all that good stuff
 - And have gotten lightly burned in the process
- Out of curiosity
 - I have a casual interest in Economics
 - Money impacts security so much that its a good field to study
 - Anything involving *this much money* must be crooked in interesting ways

• Out of having a *backup plan*:

- There are always roles for "Rocket Scientists" in Wall Street: If the NSF stops funding my research, I should understand how to fleece Manhattan
- Mostly from the informal viewpoint of my evil twin, but with the Boyd viewpoint for understanding specific institutional abberations

Start with the Incentives and Strategy:

Think Evil®

- As an *individual* in the institution, your strategic goal is to make *more money*
 - Its often not the money itself, its that money is a way of keeping score
- Thus the goal of a *rational* individual is to create *the appearance of profit*
 - ➡ "Jesus is coming, everybody look buisy"
 - The goal of a slightly less (cold, calucalting bastard) enlightened individual is to do things which the individual believes will create a profit

Consider the **Resources and Opponents**

- Smart people, lots of computers, and marketing departments...
 - ➡ All players have all three
- Many competitors have *deliberately disfunctional* structures
 - Mistrust rather than harmony in internal dealings
 - ➡ How can you run a company when your employees compete with each other?
 - ➡ Uncertanty is countered with "Certanty" in the form of models
 - Unfortunately, these models aren't actually adaptable and agile
 - But this is accepted practice by the big pools of money...
- And big pools of money out there...
 - The goal is to attract the giant pools of money to your institution...
 - ➡ More money -> More return -> more money for you!

Develop the Tactics

Think Evil[®]

- The tactical objective is to *appear* profitable
 - ➡ Especially in normal times
 - It is OK to fail later...
 - Just say "oh well, black swan, nothing we could do about it..." as you sail away in your yacht
- Extract value continuously
 - Some fraction of each year's profits + management fees
 - Stick that in something with more long term value: Treasuries, yachts, Florida swampland...
- But the question is, how to appear profitable?
 - While still being *legal*: You don't want to spend the next 150 years in PMITA Federal Prison with Bernie Madoff as your cellmate

How To *Appear* Profitable

Think Evil[®]

- Two tactics to *appear* profitable:
 - Hide the Long Tail Risk
 - ➡ The Lake Woebegone Syndrome...
 - "Profitable" Zero-Sum Games
 - ➡ The Quantum Physics of Options and Derivatives
- One strategy to *ensure deception*:
 - Regulatory and Ratings Arbitrage
 - "But Mommy, Daddy said I could..."

...Where All Funds are Above Average

Nicholas Weaver

- If you are running a hedge fund or active mutual fund, your performance is evaluated against an index/ benchmark and your peers
- Yet a puzzle: If all else is equal, it is very *very* hard to outperform the index...
 - ➡ There is a *lot* of math behind why index funds work
- So why are all the hedge funds above average?
 - ➡ Well, there's the survivor bias:
 - Only the funds that do well get benchmarked
 - And the suckers:

Think Evil[®]

Enough suckers in a market can allow the "smart" to achieve higher than average return

But Return is only Part Of the Story

Think Evil[®]

- The *all else equals* part is the exception:
 - The returns are only part of the story...
 The index is the optimum long term return at a given risk and liquidity point
- You can be *lucky*:
 - ➡ After all, you do have a 50% chance of being above average
- You can beat the market if you sacrifice *liquidity*:
 - This is one of the primary tenants of Berkshire/Hathaway: Buy companies and hold them forever...
 - The other tenant is get lots of leverage by being an insurance company because if you can price risk *right* it becomes much cheaper than ordinary borrowing
- You can *seem* to beat the market if you increase *risk*:
 - Especially "long tail" risk: low probability but highly catastrophic risk
 - Most of the time, everything is great
 - ➡ But if bad happens, its bad

Capital Decimation Partners

Think Evil®

- The "Capital Decimation Partners" hedge-fund strategy:
 - Short out-of-the-money put options
 - Until the market collapses, you make a fortune!
 - But when the market collapses, you get wiped out: it takes on a huge amount of long-tail risk
 - ➡ From "Risk Management for Hedge Funds", Andrew Lo,
- There are many, many other strategies with the basic suicidal property:
 - ➡ 90% of the time, the fund returns an above-market rate (e.g. a 10% boost in annual return)
 - ➡ 10% of the time, the system implodes and the fund's value goes to 0!
 - ➡ Long term guaranteed rate of return of -100%
- You can always run such strategies inadvertently
 - People are very good in seeing patterns that aren't there and underpricing long-tail risk
- Secrecy blinds your "opponents":
 - Both other hedge funds and your own investors! (They don't have observations/data)
 - Even with "disclosure" there is too much going on for someone to really be able to make a rational decision

I Experienced This Personally: Schwab's Bond Funds

- Schwab has two short term bond funds:
 - The promise: High liquidity and very low risk
 - SWBDX: Schwab Short Term Bond Market fund
 - ⇒ >50% AAA rated, less that <5% below investment grade</p>
 - ➡ All investments mature in <2 years</p>
 - SWYPX: "Yield Plus" Bond Fund

- ➡ <25% below investment grade, but still B rated</p>
- The same managers ran both funds, and they were sold as an alternative to money market funds (very liquid, very safe)
- It should be *almost* impossible to lose money with this investment strategy...
 - After all, just hold the bonds to maturity: even *junk* bonds will pay out unless the issuer goes bankrupt
 - Additionally, these are all very *liquid* investments

My Lesson Learned...

Think Evil®

- In March of 2008, I saw a news report about "trouble with a Schwab bond fund..."
 - Log in and see that SWBDX lost 5% of value: I pulled my money out immediately
 - → My stock holdings can bounce up and down, but bonds are a different risk profile
 - Between January 2008 and today, it lost >10%!
 - ➡ How could this happen?
- But the real nightmare, SWYPX
 - Lost ~50% of its value since January 2008! An over \$12B mutual fund completely imploded: Almost everyone has pulled their money out Many many investors lost 25% or more of their investment
- The *dog bites man* conclusion: Fund managers will not act in the interest of the fund, but in their own interest
 - Worse, the lead manager is still employed and running (what's left) of the funds!

The Strange Implication...

Think Evil®

- You want to run as large a fund as possible, because the size dictates your profitability
 - For a mutual fund: .5% fees on \$10B is \$50M a year
 - ➡ Plus you can make money loaning out securities to short-sellers
 - ➡ For a hedge fund, make that 2% fees and 20% of the profits...
- Anyone who inadvertently or overtly runs suicide strategies in a hedge fund can make it *appear* to be highly successful by taking on long-tail risk
 - And therefore attract more investors
 - And those who do it overtly are likely to be doing a better job of it!
- At least some of your competitors *will* be running suicide strategies
 - Whether they know it or not
- QED: If you want to be a successful fund manager, *it is in your interest to drive your fund into the ground!*
 - ➡ Make it legal with a little willful ignorance...
 - And when it all fails go, "Oh well, black swan, we could have never predicted that..."

Tactic 2: Derivatives as Quantum Zero Sum Games

Think Evil®

- The stock and bond markets are net-positive-sum games:
 - Real companies make real profit which flows into the system
 - However, the system size is *finite*: As a wall-street firm, you can't arbitrarily decide that there should be an extra 1 million shares in Microsoft on the market...
- Derivatives, options, credit default swaps, etc... are net zero sum games:
 - Side bets: "I pay you \$X, if condition Y happens, you pay me back \$Z"
 - For every dollar "earned", a dollar must be lost: overall the system can not make money on derivatives!
- But derivatives are "Quantum Foam":
 - In quantum dynamics: particle-antiparticle pairs are allowed to be created and annihilated without violating conservation laws
 - In finance, derivatives are the same thing:
 Two parties get together and decide to create a derivative contract
 - ➡ Thus, yay, the potential pool is *infinite*

So Why So Many Derivatives?

Think Evil[®]

- AliceCorp and BobCorp decide on a derivative trade:
 - AliceCorp pays BobCorp \$1M a quarter for the next 5 years. If MegaCorp defaults on \$100M in bonds within the next 5 years, BobCorp will pay AliceCorp \$100M
 - ➡ This is a Credit Default Swap
 - Depending on Bobcorp's credit rating, it may not have to put up any collateral

• So why do this?

- The stated reasons:
 - AliceCorp owns \$100M of MegaCorp bonds, and wants to protect itself
 - BobCorp is writing an insurance policy
- But AliceCorp doesn't own MegaCorp bonds, and BobCorp is not acting like an insurance company does...

The likely explanation: Everybody is A Winner

Think Evil[®]

- Alice (@ AliceCorp) and Bob (@ BobCorp) can both say what a good job they are doing...
 - ➡ So they both deserve their huge bonuses...
- Alice's accountant and Bob's accountant can say these are possibly profitable:
 - The Wall Street solution for *uncertanty* has not been observation and adaptability but *modeling*
 - The Black/Schols model for option pricing has many fudgefactors
 - So both AliceCorp and BobCorp can book a profit
 - No valid observations -> no valid decision cycle
- But wait, there's more...

Chaining and Counterparties...

- Suppose CarolCorp comes along and will sell BobCorp the same CDO for \$900K a quarter
 - Now BobCorp *buys* the CDO from CarolCorp, hedging the CDO *sold* to AliceCorp... And pocketing \$100K every quarter
- Now suppose MegaCorp starts to get in trouble...
 - ➡ Now AliceCorp sells a CDO to DaveCorp for \$1.1M a quarter...
- We now have \$300M in "insurance" coverage on a \$100M bond!
 - DaveCorp bought from AliceCorp which bought from BobCorp which bought from CarolCorp
 - This is why the "notional value" (the amount outstanding) can be so outrageously high for options and derivitives

But the ends *must* be suckers

Think Evil®

Nicholas Weaver

- In a long chain of options, one end or the other (or both)
 must be suckers...
 - Each link in the chain means the price stretched out away from reality
 - Chains may be worse than open markets: Open markets only create suckers on one side of the chain, not both...

• But if the sucker at the end breaks, the whole *chain* fails

- If CarolCorp fails and the chain has to pay off, now everybody is on the hook but nobody has the money for it
 - This is "counterparty risk"
- ➡ If DaveCorp fails, now AliceCorp is back on the hook for \$1M a quarter...
- And you would expect that the insuring sucker would naturally insure a lot...
 - And it was called AIG Financial Products

This is How AIG Nearly Totaled The Global Economy

Nicholas Weaver

- There were some massive amounts (trillions?) of notional value credit default swaps
 - Many insuring against the default of bonds charitably described as "Toxic Waste"
- And all chains lead to AIG

- The effectively unregulated financial products division in London which wrote tens of billions of dollars of CDSs
- When things started going south, AIG had to put up collateral
 - Which wasn't enough, because they wrote far more "insurance" then they could ever pay out
- When things went bad, the Treasury chickened out...
 - Rather than letting AIG fail and bailing out the counterparties... The treasury bailed out AIG directly and made good on the insurance
 - Allowed all the counterparties *cough* Goldman/Sachs *cough* to look like they were geniuses who made lots of money...

Companies vs Regulators

- So how did AIG get away with getting into a position to destroy the global economy?
 - Simple: The institutional incentive is to ensure a lack of oversight: the best regulation is no regulation
 - Thus for *this* conflict, the two groups are the financial institutions and the regulators
- For an institution like AIG, each sub-business has its own regulator
 - Or, is like AIG Financial Products which had no effective regulator
- But there is the overarching regulator for the entire business
 - Need to select the regulator who best serves the business's objectives

The "*But Mommy Said I Could*" Theory of Regulatory Oversight

Think Evil®

- The dirty little secret: Federal regulators are funded by the companies they regulate
 - So although their stated goals are in harmony, their actions are in mistrust
 - Whenever your opponents act out of mistrust, they become exploitable
- So companies will play regulators against each other to find the most compliant regulator
 - A trick every child knows: exploit *mistrust* and *divergent interests* between your parents

A Long and Glorious Tradition...

Think Evil[®]

- The Savings and Loan Crisis:
 - The S&L regulator was significantly weaker than the bank regulator.
 - After failing, the S&L's regulator was dissolved/restructured as the "Office of Thrift Supervision" (OTS)
- AIG
 - Ran a small thrift in order to be regulated by the OTS, which, once again, became regarded as a weak regulator
- Another weak regulator was the Office of the Comptroller of the Currency
- As long as there are competing regulators, this process will continue

So What Does This All Mean For Me?

Think Evil®

- Index funds and treasuries are the only things I can trust
 - ➡ I can't beat the index, so why try?
 - I am already "long on the federal government" by being a US Citizen...
- Any financial advisor who does *not* advise index funds, treasuries, etc... is acting in *his* interest, not mine
 - Corollary: The only major financial advisors I'm willing can trust are in the same boat: One of the primary successes of Berkshire/Hathaway is that Warren Buffett and Charlie Munger are *long term* shareholders

And for society?

- Unless compensation is fundamentally changed, these problems will recur again, and again, and again...
 - People act in their own self interest
 - And any compensation scheme based on short term perceived profits will be corruptable
- Only *long term* compensation may work:
 - ➡ E.G. The bonus is in the form of stock where only 5% a year may be sold
 - Acts to *realign* the employee's incentives to those of the long-term shareholder/owner
 - Why Berkshire/Hathaway works... Its structured around long term ownership
- Otherwise? Forgettaboutit...
 - ➡ More S&Ls. More LTCMs. More AIGs. Same song, different day

Conclusions...

Think Evil®

- 'Hi, I'm Nick, and I'm a really suspicious bastard.'
- Security is about how *people* behave
 - Their motivations and intentions
 - ➡ The nature of their organizations
- Understand and attack your opponent's decision making processes
- Security is *fun*
- I hope everyone found this interesting...