
Social Applications: Exploring A More Secure Framework
Andrew Besmer, Heather Richter Lipford, Mohamed Shehab, Gorrell Cheek 

 Department of Software and Information Systems 
University of North Carolina at Charlotte 

9201 University City Blvd., Charlotte, NC 28223 
1-(704)-687-8387 

{arbesmer, heather.lipford, mshehab, gcheek} @ uncc.edu

 
ABSTRACT 
Online social network sites, such as MySpace, Facebook and 

others have grown rapidly, with hundreds of millions of active 

users. A new feature on many sites is social applications – 

applications and services written by third party developers that 

provide additional functionality linked to a user’s profile. 

However, current application platforms put users at risk by 

permitting the disclosure of large amounts of personal 

information to these applications and their developers. This 

paper formally abstracts and defines the current access control 

model applied to these applications, and builds on it to create a 

more secure framework. We do so in the interest of preserving 

as much of the current architecture as possible, while seeking to 

provide a practical balance between security and privacy needs 

of the users, and the needs of the applications to access users’ 

information. We present a user study of our interface design for 

setting a user-to-application policy. Our results indicate that the 

model and interface work for users who are more concerned 

with their privacy, but we still need to explore alternate means 

of creating policies for those who are less concerned. 

Categories and Subject Descriptors 

H.m [Information Systems]: Miscellaneous 

General Terms 

Security, Human Factors 

Keywords 
Access Control, Privacy, Security, Social Networking 

Applications, Web 2.0 

1. INTRODUCTION 
Online social network sites such as Facebook, MySpace, 

LinkedIn and others are experiencing tremendous user growth, 

with hundreds of millions of active users. Beyond just creating 

profiles and connecting with friends, many sites are creating a 

platform for a variety of applications built on top of users’ 

profiles. Facebook and Google’s OpenSocial consortium are 

leading this effort [6][12]. These social applications will become 

a new paradigm of online interaction where services utilize 

users’ personal information and social connections.  

Social applications enhance the functionality and experience of 

social networking sites by allowing 3rd party developers to add 

content to a user’s profile or provide new social activities. 

Popular applications allow users to share photos, play games, 

and share books they have read and movies watched with friends 

and acquaintances. In order to provide meaningful and engaging 

experiences, these applications consume user profile data, e.g., 

name, birth date, interests, and more. To make the matter more 

complicated, on current platforms, applications can also 

consume the profile data of the user’s friends. The result of this 

is that a large amount of user data is now available to third 

parties. Applications can get access to this data without explicit 

user consent or knowledge, as the only consent obtained is from 

those adding the application. To demonstrate this risk, the BBC 

News developed a malicious application that had the potential to 

harvest large amounts of user profile data [1] in just three hours. 

Thus, applications contribute to the growing privacy concerns 

surrounding user profile data stored in online social networking 

systems.  

Currently, social network sites provide few mechanisms for 

limiting the exposure of user profile data to applications. 

Facebook, for example, takes an all-or-nothing approach: when 

a user visits an application for the first time, they must consent 

to allow that application to access all allowable profile data. 

This clearly violates the well known principle of least privilege 

[14]. The only alternative is to not use or visit the application at 

all. However, even this does not provide any real protection. The 

application can still request a users information on behalf of a 

friend who did install the application.  

Previous research proposes to secure user information by almost 

completely limiting what an application can access [7]. Yet, this 

may in turn limit the usefulness of social applications. We 

believe that there exists a balance between the privacy of the 

user and the social value of applications consuming users’ and 

their friend’s data. We are investigating a new model for social 

network application platforms, and do so in the interest of 

creating that balance while maintaining as much of the current 

architecture as possible.  

In this paper we first present and formally define the current 

access control model used by application platforms. We then 

attempt to improve upon this by introducing a new user-

application policy to provide protection while still allowing 

desirable information access. We then explore users’ behaviors 

in utilizing a potential interface for this new access control 

model. Finally, we discuss the potential implications for 

protecting personal information on social application platforms, 

extensions, and improvements to our current prototype. 

2. RELATED WORK 
Users of social network sites are sharing an amazing amount of 

personal information including contact information, political and 

sexual preferences, photographs, personal associations and more 

[9][17]. For example, studies at Carnegie Mellon University 

found that over 70% of students disclosed their picture, birthday, 

 

Copyright is held by the author/owner. Permission to make digital or 

hard copies of all or part of this work for personal or classroom use is 

granted without fee.  

Symposium On Usable Privacy and Security (SOUPS) 2009, July 15-17, 

2009, Mountain View, CA, USA. 



hometown, and high school information in their profiles [8] This 

proliferation of personal data puts individuals at risk for serious 

physical or online attacks, such as stalking, identity theft, and 

spear phishing attacks [16]. Traditionally, privacy research in 

social networks has involved protecting personal information in 

the form of user-to-user policies [2][5][11]. Applications, 

however, have almost no such privacy controls.  And since 

users’ original intent on social network sites is to share data with 

their friends and communities, they may overlook the risks 

associated with sharing data with applications and their 

developers.   

Studies such as one performed by Rabkin [13] demonstrate the 

risks, showing that many common challenge questions used to 

reset or remember passwords can be answered automatically by 

using Facebook profile data.  Much of this profile data can be 

harvested automatically from users by malicious applications. 

Even seemingly harmless applications, such as a chess game, 

could be unscrupulously storing an unknowing user’s data. 

A study by Felt and Evans of 150 of the top applications on 

Facebook showed that most only needed access to a user name, 

list of friends, and networks to which they belonged to function 

correctly [7]. However, current application platforms allow any 

application to query a much larger set of data, whether needed or 

not. Thus, as Felt explains, as many as 91% of current social 

networking applications have access to data they do not need, 

violating the principle of least privilege [7][14].  

In order to preserve user privacy with these applications, 

researchers have suggested that social networking platforms use 

a privacy by proxy design [7]. Privacy by proxy allows an 

application access to the user id number and uses a customized 

markup language to display user data. For example, the 

application would only have a tag <name id=”123”/>. The social 

network would then fill in the data value, “Andrew Besmer,” on 

the page rendered to the user. As a result, applications have 

access to no data fields at all, and none of the user’s data is put 

at risk.  

However, this approach severely limits the social value of many 

applications, such as giving a horoscope, mashing interests with 

recent news, or comparing how a friends’ interests matches 

yours. In cases where it does allow this it forces the developer to 

expose their business logic, usually in the form of javascript, to 

the social network and its users. A significant amount of 

potential value in the platform is lost as a result of such a strict 

approach.  

Facebook, was the first major social networking site to offer an 

application platform to its users. They opted to create an API 

complete with its own querying language, FQL. The platform 

has been very successful with a huge adoption rate and a large 

developer base of 400,000 [6].  Facebook reports that as many 

as 95% of their active users use applications. Google then 

introduced OpenSocial, an open platform that will be common 

across a number of popular social network sites such as 

MySpace, LinkedIn, and many others. OpenSocial’s early 

implementations had more of a privacy by proxy design than 

Facebook’s API [12], offering potentially greater privacy 

protections.  However, more recent implementations have 

included a REST based API which allows for data to be more 

portable and used on the hosting server, resulting in a platform 

very similar to Facebook’s. 

This portability and sharing of data is becoming even more 

important as these application platforms will allow social 

network sites to create identity management systems that allow 

profile data to be used across other websites. These systems 

would allow the social network user to manage their identity on 

one site, and have it reflected at all sites to which they belong. 

Such functionality would not be provided if the application 

platform was too restrictive. Yet this will only increase the 

complexity of privacy and security management as even more 

user data is consumed and shared across applications and sites. 

We feel that the balance between the benefits of social 

applications and user privacy may lie with another approach, by 

taking a more granular view of regulating what user profile 

attributes an application can consume. Our approach seeks to 

preserve much of the current architectures, and allows for 

portability and desired information sharing, while still providing 

additional privacy protections. 

3. CURRENT ARCHITECTURES 
Given the similarity of OpenSocial to Facebook’s API we are 

able to generalize the current state of the art. The subjects in 

social network sites are users, and applications act on behalf of 

users to provide services. Each user i maintains a user 

profile �������	
�, which is a representation of the user on the 

social network and includes information such as the user’s 

name, birth date, contact information, emails, education, 

address, interests, photos, music, videos, blogs and many other 

attributes. In addition, the profile includes the user’s set of 

friends and installed applications. Current social network 

architectures have enabled users to specify fine grain access 

control policies on the profile attributes to control user-to-user 

interactions. In a user-to-user interaction, the user making a 

request is referred to as the viewer and the requested user’s 

profile is the target. The user-to-user interaction is governed by 

the user-to-user access control policy, ��,�. For example, Bob 

(the target) specifies a policy outlining what attributes Alice (the 

viewer) can see of his personal profile. Many sites let Bob 

choose whether to share aspects of his information publicly, 

with “Only Friends” or with  “Friends of Friends”. Facebook 

provides users with the ability to set policies based on particular 

groups of friends as well. 

Applications can provide services to users and interact with 

users by combining and aggregating attributes from multiple 

target profiles. For example, an application that provides 

birthday gift recommendations for a user’s friends needs to 

access the user’s profile and her friends’ profiles to access their 

birth dates and interests to be able to make an appropriate and 

timely birthday gift recommendation. Social network 

frameworks provide a set of API’s that enable third party 

applications to interface and access user profile attributes. We 

refer to the set of attributes accessible through the exposed 

API’S as �. For example, Facebook currently allows most 

profile data to be accessed, except contact information such as 

phone numbers and email addresses. OpenSocial is similar, with 

individual sites adopting the platform able to reduce certain 

fields within � in different ways. 

Current frameworks adopt an all-or-nothing policy when it 

comes to applications. In other words, upon installing an 

application, the application is given access to all the attributes in �. Thus, when a user i installs application ����, the application 



has access to all the attributes in ��� that make up user i’s 

profile.  The application can also access target profiles of user 

i’s friends by acting as a viewer on behalf of user i. This 

introduces the ability for an application to access profile 

attributes of users that have not installed the application or 

consented to its use.  

When the target users create the user-to-user policy ��,�, their 

intention is that they are granting access to other people, and not 

to installed applications accessing their profiles through their 

friends. Thus, this current model treats an application that is not 

installed by the viewer as one of the viewer’s friends, and as the 

viewer himself if it is installed. This violates users’ expectations 

and provides little protection to users who wish to use any 

applications. This also makes it very easy for a seemingly useful 

application to maliciously access large amounts of personal 

information. 

To resolve this issue, current social network frameworks enable 

users to specify a default access control policy �� for all 

applications which the user has not installed.  User � specifies 

the set of profile attributes that applications that are not installed 

by user � are allowed to access. In Facebook, the user’s Name, 

Networks, and List of Friends are available to all applications. 

However, a user such as Bob may also allow or restrict other 

profile attributes, e.g., Profile Picture, Education History, Work 

History, etc. The default policy provided by the sites is usually 

permissive in order to promote sharing. 

After all policies have been taking into consideration we can 

determine the set of all possible data attributes accessible to an 

application accessed by a viewer who would be able to make 

requests for information about a target.  This can be described as �����,�,�, which is restricted by the user-to-user policy, and then 

additionally restricted for targets who have not installed the 

application. We have more formally defined this access, a list of 

attributes, and policies in the Appendix.  To improve upon this 

model, we propose a more granular framework that would 

further restrict the access granted to applications. 

4. A GRANULAR FRAMEWORK 
We introduce a social network application access control model 

that addresses the shortcomings of the current application access 

control model. Our goal is to maintain as much of the current 

architecture as possible, as current platforms are already widely 

used.  Facebook, for example, reports having over 24,000 

applications by 400,000 developers. Our model improves upon 

the model presented in the previous section by introducing a 

user-to-application policy on top the previously described 

framework. This restricts the application to access only those 

attributes specified in the user-to-application policy. Our model 

presents several restrictions on the access granted to the 

application in order to enforce user preferences and create a 

more secure execution environment. 

4.1 Our Approach 
We introduce the user-to-application policy, ����� ,
, specified 

by any user � outlining the specific access restrictions for the 

application. This additional policy has two effects. First, it 

restricts what information the application can access for the 

person who installs it. For example, Alice specifies what 

attributes application App1 can access of her profile. Second, the 

policy also restricts what information the application can request 

of a user’s friends on behalf of a user. We refer to this as 

friendship based protection. 

Our model gives the viewer finer control in deciding their 

exposed attributes to applications. In addition to providing a 

mechanism to enforce fine grain access control on applications, 

our proposed model also provides a mechanism for social 

collaboration in making policy decisions, where the viewer is 

able to influence the set of target attributes accessible by the 

application, which is a fundamental difference when compared 

to the current social network implementations, including 

Facebook. Given the large set of active users on these social 

networks it would be advantageous to harness their collective 

knowledge to allow others to make informed policy decisions.  

Just like the existing model, it still uses the user-to-user policy to 

additionally govern what an application can request on another 

user’s behalf. And, it still includes the notion of a default policy 

for applications that the user has not installed, so a target user 

can still restrict all uninstalled applications if desired. So again 

we define ����� ,�,� as the set of attributes accessible to an 

application that is installed by the viewer, and is used to access 

the profile of the target user. If the target user already installed 

the application then the attributes accessible to the application 

are restricted not only through friendship based protection but 

his/her own application policy to ensure an application never is 

able to supersede a user’s privacy decision. If the target has not 

installed the application then the default target application policy �� will be used.  This is again more formally described in the 

Appendix.   

For example, Bob (the target) is a careless user who doesn’t pay 

close attention to protecting his profile privacy and leaves his 

default application policy to be very permissive such that ���� 

is the same as �. Alice (the viewer) is Bob’s friend, and she 

installed a horoscope application ���� which is not installed by 

Bob. Alice is security conscious and she setup her application 

policy �����,��
�  to allow access to only the Birth Date 

attributes.  

The application will now only be able to access Bob’s birth date 

when requested by Alice, and nothing more. Alice’s awareness 

does not only protect her but it also protects Bob’s profile due to 

the fact that Alice’s policy �����,��
�  is incorporated when the 

application ���� attempts to access Bob’s profile. 

Friendship based protection allows humans to discern for 

themselves what the minimum set of attributes should be in 

order to run a given application.  Computers are currently not 

readily equipped or particularly good at making these decisions.  

Thus, when Alice makes in informed decision for herself that 

decision is in turn used to help Bob and the remaining part of the 

social network. Again Bob is further protected if he has 

specifically prevented his birth date from being known by Alice.  

In that case ����would not be granted access to Bob’s date of 

birth.  

In our model, friends’ (viewers) application policies are 

incorporated when making access decisions, however the policy 

is upper bounded by the policies set by the target. Thus the 

addition of the viewer’s policy ����� ,� will only help limit the 

profile exposure and is upper bounded by the policies set by the 

target.  In no case is it possible for a careless viewer’s policy to 

reduce the effects of a protective target’s policy.  In other words 



if Bob is security conscious and has set his default policy to 

what he is comfortable sharing then no decision by Alice can 

reduce the effectiveness of his policy. 

4.2 Setting the User to Application Policy 
Our access control model requires three different policies to be 

created: a user-to-user policy, a default application policy, and 

our new user-to-application policy. Most social network sites 

already have controls for user-to-user policies, and other 

researchers including ourselves are focusing on improvements to 

these controls [11]. So we will not address this policy in our 

current work. Many sites also already provide a default policy, 

which users can customize. For example, on Facebook, the 

default policy settings are one part of the general privacy 

settings, and users can select which pieces of information they 

are willing to share or not share with applications they have not 

installed. Current default policies tend to be permissive to 

encourage sharing, but can be modified to be very restrictive. 

Our model adds a new policy, the user-application policy, �����,
 . The most basic method for creating this policy is to ask 

users to indicate their choices for each application they interact 

with. There are several times we could collect this data from 

users. First, we could ask users to indicate all of their 

preferences the first time they access or install an application. 

However, this may take too much time to specify a complex 

policy. Alternatively, an application could request confirmation 

for each individual access to a data item, or at least for the first 

access of that piece of information. However, given user 

behavior in ignoring frequent popup boxes, such as with invalid 

certificates on phishing websites [4], we felt this may reduce the 

likelihood of good privacy decisions and lead to an ineffective 

solution.  Finally, users could have special configuration settings 

for each application they have accessed to view or modify their 

policies at any time.  

There may be other more advanced methods for setting this 

user-application policy. For example, policies could allow the 

generalization of personal attributes [15], e.g., providing state of 

residence instead of a complete address. In such cases, the user 

could opt to allow the application to view generalizations of 

information on their behalf. This generalization might serve to 

be useful as the user can completely harness applications such as 

horoscopes and location-based services without exposing the 

specific data as to their whereabouts or actual date of birth. 

However, providing this capability creates an even more 

complicated set of controls and decisions for the user.  

Another alternative would be to rely on a voter model, in which 

more informed users make decisions about the access policies 

for themselves and for others in the community. Those in the 

community could then apply a policy based on the number of 

votes. This would reduce the burden of choosing a policy for a 

large number of users, yet potentially still provide a useful 

policy. Of course the down side to such a scheme is that it is 

subject to gaming, in which several malicious accounts are used 

to defeat the system.  

For our first exploration of our model, we chose to ask users to 

set all of their preferences upon installation, expanding upon the 

current screen for providing consent that most if not all 

platforms already employ. We are currently investigating a basic 

selection of data fields, without aggregation or voting. With an 

understanding of how well this method works, we can then 

explore more advanced methods like these in future prototypes 

with a better understanding of how users will respond. 

4.3 Prototype User Interface 
As a step towards understanding and refining our model, we 

focused our first prototype on the user interface for specifying 

the user-application policy, and mechanisms to help users 

choose what information to share or protect. A screenshot of this 

interface is shown in Figure 1. Users view this interface on 

installation, the first time they access the application. We 

focused on several interface features to aid users in making 

decisions about their policy. First, we allowed applications to 

request both required and optional information fields. The policy 

would then automatically restrict any information not requested. 

When adding or accessing an application for the first time, users 

would be shown the information that the application requests, 

and given the opportunity to modify these fields or opt out of the 

application. 

In the interface, we starred the required fields and grayed out 

checkboxes for those fields, see Figure 1, part 1. We defaulted to 

all requested fields being selected to encourage sharing, but the 

user could uncheck any of the optional fields to protect that 

3. Community Bar 2. Users Profile Data 1. Data Requested 

Figure 1 – Prototype User Interface 



information. We also did this in part to preserve the current 

nature of the applications for users who do not care to protect 

their privacy. By simply skipping to the continue button users 

are opting for a full disclosure, such as the one described in the 

previous model, with little extra time involved. These users 

however, are still offered greater protection as the application 

has constrained its own level of full disclosure to those attributes 

it needs to optimally work. And applications that request 

extensive amounts of information may get a second look from 

users seeing so much requested data. 

To make each decision more concrete and clear, we added the 

user’s own personal information that will be shared, and 

information from a randomly chosen friend, to the interface, see 

Figure 1, part 2. This provides a more accurate mental model of 

precisely what will or will not be shared with an application. In 

addition, it serves to catch the user’s attention to try and prevent 

them from skipping this screen even though setting a policy is 

not their primary task. 

We also added a community indicator bar, which is an 

indication of what percentage of the user’s friends have allowed 

access for this application to each information field, see Figure 

1, part 3. This may influence users’ decisions regarding which 

pieces of information to share. Finally, users could read an 

application-supplied description of how each of the information 

fields would be used by clicking for more information.  

For this prototype, we chose to emulate and implement on the 

Facebook platform, as that is currently the most active 

application platform, and Facebook’s API allows access to a 

greater amount of user data than other social networks. This 

allowed us to more easily recruit users for the user study and 

provide an extremely realistic user experience. 

The wording chosen and buttons to add an application are 

presented in a similar appearance to Facebook’s current 

application interface. Thus, users click on a “Continue” button 

to indicate consent and install the application, or “cancel” to 

leave the application and not set their policy. We have not yet 

prototyped a method for creating a user-application policy when 

the user decides not to install the application. One possible 

action is to immediately lock down the application policy to 

prevent any data from being shared. This certainly needs to be 

explored further.  

The prototype shown in Figure 1 was implemented as a 

Facebook application. Thus, users can “install” this prototype on 

their profile, giving the prototype access to their real profile 

information to add to the interface. In an actual implementation, 

the information fields required by an application can be modeled 

in XML to automatically generate this screen for each 

application. While we chose a number of real applications for 

the prototype and user study, we made up which information 

fields they would want, the explanations, and the values for the 

community indicator bar. 

5. USER STUDY DESIGN 
The model proposed relies on user input to regulate the amount 

of exposure to both the user and the user’s friends. We 

developed a user study to see to what extent users would set 

policies restricting or allowing that information on Facebook to 

be released to an application. To accomplish this we prototyped 

the implementation previously described, which is depicted in 

Figure 1. We then performed a user study, asking users to go 

through the process of adding a number of applications to their 

profile. We told participants that we had created a new 

application container that we were testing, and that they would 

be adding applications to their profile using that container, 

which allows them to limit the information given.  

We also informed the participants that they did not have to add 

any applications they were not comfortable with, and that we 

would help them remove the ones they did not want to keep at 

the conclusion of the study. In reality, no applications were 

added – the prototype was merely a simulation. As a result all 

our participants were completely protected from malicious 

applications that might have existed. We did want users to 

believe they were actually adding the applications in order to 

make real privacy decisions, and all users appeared to take the 

task seriously and believe that they were adding these 

applications to their profile. After the tasks, participants were 

informed of this and our prototype application was removed 

from their profile. 

All participants were first given a survey which collected 

demographic information, as well as used Westin’s [10] method 

for categorizing people into privacy fundamentalists, 

pragmatists, or unconcerned. After participants completed the 

survey they signed into their own Facebook account and we 

installed our prototype. They were given no training on the 

interface. 

The prototype presented users with eleven application 

installation scenarios. All applications were real Facebook 

applications to enhance realism, but we created the data fields 

that each application was “requesting” from our participants. 

Applications we chose may or may not be malicious, as we have 

no way of truly knowing; this was a major reason for choosing 

to simulate the experience. We chose a wide variety of 

functionality including horoscopes, flowers, games, and others.  

All scenarios were the same for each user, except that the users’ 

own profile information was inserted into the interface. We 

began with three training scenarios that asked for simple and 

basic information. The remaining scenarios included two that 

asked for information that was realistic within the context of the 

application, two that were unrealistic but seemingly harmless to 

allow, and two that requested sensitive information that did not 

fit the applications’ context. There was also one application that 

asked for twenty-eight different attributes and another that did 

not ask for anything except for name and networks to which the 

participant belonged.  

The realistic scenarios asked for data that made sense given the 

context of the application. For example, a book recommendation 

application requested the user’s interests and books liked. An 

unrealistic one was something like a flowers application that 

asked for political interests. An out-of-context application asked 

for sensitive information such as a hometown or date of birth, 

but that request did not fit with the theme of the application and 

was not justified. Within each category, we presented users with 

one shorter and one longer scenario of requested information 

fields.  

When participant completed all eleven scenarios, we then 

interviewed them and asked them several questions including 

what they liked and disliked about this method of installing 

applications, who they thought they gave their data to, and 

feedback on other elements of the interface. We recorded both 



the computer screen and audio using usability software for later 

analysis. 

6. USER STUDY RESULTS 
We recruited participants through the use of Facebook ads on 

two campuses and in our city.  However due to the requirement 

to participate in the study on campus, all of our participants 

ended up being students. We had a total of seventeen 

participants recruited from two local universities who were 

active members of Facebook. We had sixteen undergraduate 

students and one graduate student participate. Eleven of our 

participants were females and six males. With the Westin 

survey, we classified ten of these participants as being privacy 

pragmatists: those that are concerned about privacy but are 

willing to trade it for benefits. Out of the others, five were 

classified as being fundamentalists: those who are distrustful of 

organizations and worry about how their data is used. The 

remaining one participant was classified as unconcerned.  

In general, participants who added applications had two 

strategies they could use for releasing data to applications. They 

could use the application’s default policy, releasing all required 

and optional data requested. Or they could also use a custom 

policy, restricting some or all of the optional information. Some 

participants were minimalists and unchecked every optional 

field, others made case-by-case decisions.  

Table 1 – Data by Participant 

M
o
ti

v
a
te

d
 

Privacy Total 

Added 

Default 

Policy 

Custom 

Policy 

Avg 

Time 

P1 10 8 2 0:49 

P2 10 3 7 0:22 

P3 7 1 6 0:23 

P4 4 4 0 0:11 

P5 5 4 1 0:26 

P6 11 3 8 0:16 

P7 11 2 9 0:19 

P8 10 3 7 0:21 

Average 8.50 / 11 3.50 / 8.5 5.00 / 8.5 0:23 

      

U
n

m
o

ti
v
a

te
d
 

P9 11 11 0 0:16 

P10 11 7 4 0:14 

P11 11 11 0 0:11 

P12 11 11 0 0:09 

P13 5 5 0 0:08 

P14 11 11 0 0:08 

P15 11 11 0 0:05 

P16 3 3 0 0:12 

P17 8 5 3 0:12 

 Average 9.11 / 11 8.33 / 9.11 0.78 / 9.11 0:10 

 

Table 2 – Comparison of Groups Disclosure 

Privacy 

Total  

Added 

Default  

Policy 

Custom  

Policy 

Avg 

Time 

Motivated 77.27% 31.82% 45.45% 0:23 

Unmotivated 82.83% 75.76% 7.07% 0:10 

Table 1 shows the number of applications added, number of 

times each participant used the strategies described, and average 

times, for their eleven scenarios. Users generally stuck with one 

strategy or the other – either accepting all information with little 

thought, or using custom policies to restrict information or not 

adding the application at all. We grouped participants by their 

general strategy, as indicated by the time spent on each scenario, 

use of custom strategies, and behavior observed on the 

recordings. We are not attempting to say these groups are 

statistically different, rather we categorized participants based 

on observed behavior, both quantitative and qualitative. We 

refer to these two categories as motivated users and unmotivated 

users. This categorization was by no means meant to be perfect, 

but used to illustrate the differences in behavior and discuss our 

results. Westin’s survey had some correlation to these 

groupings.  All fundamentalists fell into the motivated group, 

along with two pragmatists, and the one unconcerned.  

A closer look at three participants labeled P6, P7, and P8 reveals 

that they used a minimalist strategy. This minimalist strategy 

shows that they are motivated in restricting applications from 

acquiring their data. P7 and P8 were both pragmatists and P6 

was our sole participant categorized as unconcerned.  Others like 

P13 exhibit behavior that in Table 1 would suggest they belong 

to the motivated group.  P13 however made the decision not to 

install applications based on if she had seen them before, as she 

did not want more stuff on her profile. This suggests participants 

may have also not added applications for social reasons, not just 

for privacy reasons.  Analysis of the recordings left us unclear 

on P16’s intentions. As such we grouped P16 with the 

unmotivated group based on Westins classification as well as the 

similar timing data. 

The data in Table 2 summarizes the results for the two groups, 

and shows that there are stark differences between the motivated 

and unmotivated users. Motivated participants added fewer 

applications, did not grant applications access to the attributes 

they requested, set custom policies far more often and on 

average took more than twice the time to add applications as 

their unmotivated counter parts. 

Specifically, unmotivated participants used whatever the 

applications asked for 76% of the time they installed, while the 

motivated users only used that strategy 32% of the time they 

installed an application. In fact, the unmotivated group only set a 

default policy 7% of the time.  The motivated group instead set a 

custom policy 45% of the time, or allowed the application 

access to some subset of requested attributes. The unmotivated 

group rarely used these strategies. This accounts for the timing 

difference between the two groups – the motivated group spent 

time reading and unchecking information fields, while the 

unmotivated group did not. Table 3 shows the results of these 

strategies on four of the eleven different scenarios or tasks.  

These are representative of two context appropriate and two 

context inappropriate scenarios. Horoscopes and Books iLike 

asked for information that seemed somewhat appropriate to the 

scope of the application. However SpringWater asked for 

sensitive information, provided no explanation for data it 

required, and the application’s description was written in 

Hebrew. The HighSchoolBuddies scenario seemed less 

suspicious, but still asked for several pieces of information that 

did not fit the application and were not justified. 



For both context appropriate scenarios, the motivated and 

unmotivated groups had high rates of adding the application and 

high rates of allowing access to the data. The exception was 

hometown information for the horoscope application, which 

might not have made as much sense as we originally planned. 

The description stated that the hometown information was used 

to see what stars the participant had been born under. Motivated 

users usually restricted this information. 

SpringWater, a context innapropriate scenario, requested a 

variety of sensitive information. The motivated group mostly 

refused to add this application, while the unmotivated group had 

a startlingly high rate of adding the application and allowing 

their information to be accessed. However, a signifcantly 

different number of motivated participants were willing to add 

the HighSchoolBuddies application as a result of not being 

forced to release personal information, something that the 

SpringWater scenario required. Instead, the motivated users 

restricted the optional fields to protect themselves. 

In general the users in the motivated group protected their 

personal data more than the unmotivated group. Other scenarios 

had similar results where the unmotivated participants just 

accepted the defaults. As Table 3 shows, there were, however, 

still times when the motivated group disclosed personal data to 

applications which might not have needed it.  When reviewing 

the videos we notice that in some cases motivated users had not 

entered the data into Facebook, so they might have mistakenly 

considered themselves protected. For example, if a participant 

never supplied their favorite books to Facebook they would not 

consider that option while installing. There is danger in this 

strategy which we discuss later. In addition, the three 

participants P6, P7, and P8 used a minimalistic strategy to 

account for the privacy decisision and may have incorrectly 

assumed that their information was being protected even though 

the application may have required sensitive information it did 

not need.   

On applications that asked for data which it didn’t seem to need 

but could be harmless, the motivated group of users used the 

custom policy to stop that disclosure. For example, in another 

scenario a flowers application requested participants’ political 

affiliations. Seven of the eight motivated participants added the 

application and five of those set a policy to remove political 

affilations from being disclosed. In contrast unmotivated 

participants who installed the flowers application allowed the 

disclosure with none restricting it.  

To summarize our results, we discovered that participants 

generally behaved in two different ways.  The first group made 

efforts to minimize the impact of installing an application as 

well as attempted to make informed decisions about the 

application’s data usage in context.  For these users, the 

interface and the model would work reasonably well. The 

second group did not, and generally accepted the default policy 

supplied by the application.   

While we desired to evaluate the potential effectiveness of the 

community bars, there was too little use of custom policies, and 

thus little impact of the bar in our study. A future study 

issolating this feature would be needed to determine whether 

this can persuade users to modify their policies to match their 

community, and the impact this would have on the overall 

community. 

7. DISCUSSION 
The model presented seeks to find a balance between sharing 

information with applications and protection of user privacy. As 

such, the model does not offer perfect protection. Our hope is 

that the results presented here can inform the next iteration of 

this model and inspire others to do the same.  The scope of the 

problem is enormous as quite literally hundreds of millions of 

users’ personal data could be at risk. We feel users can and still 

should be able to choose to share information with applications 

if they desire, and this may lead to inadvertent disclosures. 

However, the model does potentially reduce the risks by 

restricting the amount of information disclosed both for 

individuals using the application and their community of friends. 

This model is thus highly dependent on the success of setting an 

appropriate user-application policy. For our first exploration, 

users were asked to set this policy on installation.  

A limitation of our study is that our participants were aware that 

they were participating in a study, and may have made more 

restrictive or careful decisions than they would make when 

faced with installing an application they are really interested in. 

 

 

Table 3 -  Comparison of Disclosure Scenarios 

  Context Appropriate Context Inappropriate 
  

Horoscope Books iLike SpringWater HighSchoolBuddies 

  Motivated Unmotivated Motivated Unmotivated Motivated Unmotivated Motivated Unmotivated 

Added 100.00% 88.8% 87.5% 88.8% 37.5% 77.7% 62.5% 88.8% 

Birthday *100.00% *88.8% - - *37.5% *77.7% - - 

Hometown 37.5% 66.6% - - *37.5% *77.7% - - 

Location - - - - 0.00% 77.7% 25% 88.8% 

Work Info - - - - *37.5% *77.7% 12.5% 88.8% 

High School - - - - 0.00% 77.7% 25% 77.7% 

Books - - 62.5% 88.8% - - - - 

* Indicates required data to install 

 



Thus, we would need to further verify whether this model would 

work in deployment.  We did try to make the prototype as 

realistic as possible to have participants believe they were 

installing these applications. 

A number of users were motivated to take the time to review the 

interface and further restrict the information they shared. As a 

result, these users reduced their threat, yet still did share some 

useful information with applications. In addition, they would 

have added those same protections to their friends and informed 

the greater community of their choices. This set of users would 

likely also be motivated to set a restricted default policy, further 

protecting them from all unknown applications.  Thus, we feel 

that the model and the interface would achieve our desired 

balance for social applications for those who truly care about 

their privacy.  

However, there are still improvements that could be made. 

There were still instances of motivated users sharing sensitive 

data with applications outside a seemingly appropriate context.  

And while several users were minimalists, and restricted all 

optional fields, they did still allow sensitive information to be 

shared when it was required by the application. Thus, 

minimalists may feel more protected, but could still release their 

data without full consideration.  

Additionally, many users monitor their privacy on their profile 

by not entering information in the first place, or entering in false 

information. Thus, the application policy for that data is 

irrelevant, as it would not impact their real information. 

However, if users later update their profiles, they may then 

accidentally disclose that information to applications already 

installed. This problem is reflected in our current interface as 

non-disclosed user attributes result in blank spaces within the 

interface. The next iteration of our model needs to somehow 

account for these missing attributes.  We did observe several 

cases where a custom policy was set but a personal attribute 

such as date of birth or hometown was not allowed to be shared 

with applications or had not been filled in on their profile.  In 

many of these cases users would not make a decision to restrict 

this attribute.   

About half of our participants were not motivated enough to take 

the time to set their policy or consider whether to add an 

application in the first place. This unmotivated group left 

themselves open to disclosures of very personal information, 

and as a result, also exposed their friends with weak default 

policies. Arguably the only ones they are putting at risk are 

others like them who are not going to be willing or do not want 

to set either the default policy D# or the application policy A%&&',#. So the risky users will be hurting other risky users. 

Given the population of these social network sites, types of data 

involved, and ease with which the information can be collected, 

we find this to be unacceptable. With 200 million active users on 

Facebook, even if only 20 percent of users engage in risky 

behavior, that leaves 40 million users subject to greater risks. 

That is still lot of users and the numbers continue to grow every 

day. A better social feedback mechanism might be needed to 

better inform those users when they are making a decision that is 

contrary to the community’s decisions. 

There are several reasons users may not be taking the time to set 

these policies. We believe that users are unlikely to fully 

understand the risks associated with the disclosure of certain 

pieces of information, such as their hometown or work history. 

Thus, they may feel comfortable sharing that information, when 

perhaps they should not be. This leads us to believe that we 

either need to increase user motivation to influence more users 

to more appropriately set their application policies, or reconsider 

the means in which we set A%&&',# and D#. The model presented 

does not dictate how this is done, and with appropriate policies 

would effectively preserve the users’ privacy and security and 

promote the social value of applications. This is a tricky balance 

though because if the policies are too restrictive, some 

applications will be effectively crippled. If the policies are too 

open, users who do not change the policies will expose 

themselves and be the weakest links in their social networks. 

Thus, more work needs to be done to explore appropriate 

mechanisms for setting these policies. For example, perhaps 

policies set by motivated users could be easily adopted or 

become the default policies for unmotivated users. We intend to 

explore such variations with future studies where we harness the 

collective policies of motivated users in some way. 

In a much larger sense our results imply that any access control 

model that relies on users determining their own policies may be 

subject to similar results.  That is, protecting those who are most 

concerned but inadequately protecting those who are less 

concerned or less aware of the risks.  Perhaps current access 

control mechanisms need to reexamine the means by which 

policies are set given the unmotivated groups blatant disregard 

for their personal data. 

It is also possible but less likely in our model for a user-to-user 

policy ��,� to be violated by an application as a result of this 

collective information, such as a recent incident involving the 

TopFriends application [3] on Facebook. The application 

unintentionally allowed a user to see profile information of 

others that they should not have access to, because the 

application cached user data ����� ,�())
. This can be completely 

mitigated for a given target in our model by a strong default 

policy, and if they install the application, a strong policy on that 

application.  In the previous model users who have installed the 

application, even if briefly, have no way of mitigating this 

potential attack. 

8. CONCLUSIONS 
We have presented a new model for access control for 

applications on social network sites. This model adds a new 

user-application policy which greatly restricts the information 

applications can access, while still allowing useful and desired 

information sharing. The model also adds few changes to 

existing application platforms, enabling our approach to be 

easily adopted. The success of our model, however, depends 

upon appropriately setting the new user-application policy. Our 

first prototype explored having users set this policy upon 

installation.  

We found that for those who were motivated to protect their 

information, they were able to easily use our interface to set 

their policy and protect much of their personal information. 

These users would be able to reap the benefits of social 

applications and remain reasonably protected against the threats 

posed by them.  In fact, a user could even be using a malicious 

application without exposing themself to any risk. However, this 

interface did not work for half our users, who were still 

unmotivated to protect themselves, and in turn, their friends. For 



these users, we need to explore alternate means to set their 

application policies. 

Despite our mixed user study results, we believe the overall 

model is favorable for several reasons. First, it lessens the 

likelihood that someone who is concerned about an application 

accessing his or her data will accidently disclose that 

information. Second, it prevents the ability of applications that 

are poorly coded from being exploited by hackers to gain the 

entire set of a user’s data. It also reduces the ability of an 

application to record all the user attributes and accidently 

disclose them to others where it might violate the user-to-user   ��,� policy, as was done recently by a popular Facebook 

application. For those who are very concerned, data is not ever 

released without their explicit consent. And those who are less 

concerned can opt to release everything just as they are able to 

in the current architectures. 

We will continue investigating the issues raised by our model 

and user study.  In addition, we will seek other ways of setting 

the user-to-application policy that will improve upon the results 

of our current prototype and further protect even greater 

numbers of users.  

9. ACKNOWLEDGEMENTS 
We would like to thank Gabrielle Bankston who assisted in data 

collection. The research of Mohamed Shehab has been 

supported in part by the National Science Foundation (NSF-

CNS-0831360) and National Security Agency (NSA H98230-

07-1-0231). 

10. REFERENCES 
[1] BBC News 

http://news.bbc.co.uk/2/hi/programmes/click_online/73757

72.stm, accessed September 29, 2008. 

[2] boyd, d. Friendster and publically articulated social 

networking. In the Extended Abstracts of the Conference 

on Human Factors and Computing Systems (CHI 2004). 

Vienna, Austria, 2004, pp1279-1282. 

[3] CNet News, http://news.cnet.com/8301-10784_3-9977762-

7.html, Accessed September 29, 2008. 

[4] Dhamija R., Tygar J. D., Hearst M., Why phishing works, 

Proceedings of the SIGCHI conference on Human Factors 

in computing systems, April 22-27, 2006, Montréal, 

Québec, Canada  

[5] Donath J. and boyd d.,  Public displays of connection. BT 

Technology Journal, 22:71–82, 2004. 

[6] Facebook 

http://www.facebook.com/press/info.php?statistics, 

accessed September 29, 2008. 

[7] Felt A. and Evans D., Privacy Protection for Social 

Networking Platforms. In Web 2.0 Security and Privacy 

2008, May 2008. 

[8] Gross R. and Acquisiti A., Information Relevation and 

Privacy in Online Social Networks. In Workshop on 

Privacy in the Electronic Society, 2005. 

[9] Jones H., Soltren J., Facebook: Threats to Privacy. MIT, 

December 14, 2005. Retrieved from http://www-

swiss.ai.mit.edu/6805/student-papers/fall05-

papers/facebook.pdf. 

[10] Kumaraguru P. and Cranor L.. 2005, Privacy Indexes: A 

Survey of Westin’s Studies, ISRI Technical Report, CMU-

ISRI-05-138, 2005. 

[11] Lipford H., Besmer A., and Watson J., Understanding 

privacy settings in facebook with an audience view, 

UPSEC 2008, Berkeley, CA, April 2008. 

[12] OpenSocial http://code.google.com/apis/opensocial/, 

accessed September 29, 2008. 

[13] Rabkin A., Personal knowledge questions for fallback 

authentication. In Symp. on Usable Privacy and Security 

(SOUPS'08), Pittsburgh, PA, USA, July 2008. 

[14] Saltzer J., Schroeder M., The Protection of Information in 

Computer Systems. Proceedings of the IEEE 63(9), 1278–

1308 1975. 

[15] Shehab M., Squicciarini A. and Ahn G., Beyond User-to-

User Access Control for Online Social Networks, ICICS 

2008, October, 2008, Birmingham, UK. 

[16] Sophos.com (2007). Facebook ID probe shows 41% of 

users happy to reveal all to potential identity thieves. 

Accessed August 8, 2007. 

[17] Stutzman F., An evaluation of identity-sharing behavior in 

social network communities. In the Proceedings of iDMAa 

and IMS Code Conference, 2005. 

 

 

  



 

APPENDIX 

11.1 Current Architectures 
The current architecture can be formalized as the following: 

• �����,�,� : The profile attributes for target user � 
accessible to application ���� through viewer user *. 

�����,�,� + , ��,� -  �, �. ���� + 1��,� - �� - �, �. ���� + 00 
Where: 

• �. ���� : Is a binary attribute, which is set to true if 

user � installed application ���� and false otherwise. 

• � : Set of attributes available to the application 

through the api’s exposed by the social network. 

• ��,� : Is the user-to-user profile policy for target user � 
and viewer user *. Bob (the target) specifies a policy 

outlining what attributes Alice (the viewer) can see of 

his personal profile. Note, that if viewer and target are 

the same user, then ��,� +  � which is effectively 

everything provided by the API framework.  Most 

sites allow users to define this policy with respect to 

public, friends, or even groups of friends. 

• �� : (Default application policy), the set of profile 

attributes specified by the target user � regarding what 

applications that are not installed by user � are allowed 

to access. In Facebook, the user’s Name, Networks, 

and List of Friends are available to all applications.  

Users can chose to share or protect many other 

attributes such as interests, hobbies, work, or location. 

 

 

 

 

 

 

11.2 Our Approach 
Our architecture can be formalized as the following: 

• �����,�,� : The profile attributes for target user � 
accessible to application ���� through viewer user *. 

�����,�,� + 1 ��,� - ����� ,� - �����,� - �, �. ���� + 1��,� - �����,� - �� - �, �. ���� + 00 
Where:  

• �. ���� : Is a binary attribute, which is set to true if 

user � installed application ���� and false otherwise. 

• � : Set of attributes available to the application 

through the api’s exposed by the social network. 

• ��,� : Is the user-to-user profile policy for target user � 
and viewer user *. Bob (the target) specifies a policy 

outlining what attributes Alice (the viewer) can see of 

his personal profile. Note, that if viewer and target are 

the same user, then ��,� +  � which is effectively 

everything provided by the API framework.  Most 

sites allow users to define this policy with respect to 

public, friends, or even groups of friends. 

• �� : (Default application policy), the set of profile 

attributes specified by the target user � regarding what 

applications that are not installed by user � are allowed 

to access. In Facebook, the user’s Name, Networks, 

and List of Friends are available to all applications.  

Users can chose to share or protect many other 

attributes such as interests, hobbies, work, or location. 

• �����,
 : The user-application policy is the policy 

specified by any user � outlining the specific access 

restrictions for the application to the user’s profile 

attributes. 

 

 

�����,�())

+
23
4
35 67��,��89

: - �, �. ���� + 1
67��,��89

: - �� - �, �. ���� + 0
0 

The effective set of attributes accessible by a given 

application can be formalized as: 

The term ;< ���,���89 = represents the effective 

set of attributes contributed by treating the 

application as a normal viewer and adopting 

the target to viewer profile policies.  Note, that 

in this model assumes that the application 

access is controlled solely by the user to user 

policy.   

�����,�())    
+
23
4
3567��,� - ����� ,��89

: - ����� ,� - �, �. ���� + 1
67��,� - ����� ,��89

: - �� - �, �. ���� + 0
0 

The effective set of attributes accessible by a given 

application can be formalized as: 

 

 


