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ABSTRACT
We present a technique for using content-based video labeling as
a CAPTCHA task. Our CAPTCHAs are generated from YouTube
videos, which contain labels (tags) supplied by the person that up-
loaded the video. They are graded using a video’s tags, as well
as tags from related videos. In a user study involving 184 partici-
pants, we were able to increase the human success rate on our video
CAPTCHA from roughly 70% to 90%, while keeping the success
rate of a tag frequency-based attack fixed at around 13%. Through a
different parameterization of the challenge generation and grading
algorithms, we were able to reduce the success rate of the same at-
tack to 2%, while still increasing the human success rate from 70%
to 75%. The usability and security of our video CAPTCHA ap-
pears to be comparable to existing CAPTCHAs, and a majority of
participants (60%) indicated that they found the video CAPTCHAs
more enjoyable than traditional CAPTCHAs in which distorted text
must be transcribed.

Categories and Subject Descriptors
H.5.2 [HCI]: Web-based interaction; D.4.6 [Security and Protec-
tion]: Access Control and Authentication

Keywords
Completely Automated Public Turing test to tell Computers and
Humans Apart (CAPTCHA); Human Interactive Proof (HIP); video
understanding; tagging

1. INTRODUCTION
A Completely Automated Public Turing test to tell Computers

and Humans Apart (CAPTCHA) is a variation of the Turing test
[24], in which an online challenge is used to distinguish humans
from computers. They are commonly used to prevent the abuse of
online services, such as a program creating thousands of free email
accounts and then using them to send SPAM. A number of hard ar-
tificial intelligence problems including natural language processing
[8], character recognition [3, 4, 23, 26], speech recognition [16],

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.
Symposium on Usable Privacy and Security (SOUPS) 2009, July 15–17,
2009, Mountain View, CA USA.

and image understanding [5, 6, 11, 22] have been used as the basis
for CAPTCHAs [19].

Various criteria have been proposed in the literature for evaluat-
ing CAPTCHAs [1, 22, 26]. We propose the following four desir-
able properties for CAPTCHAs:

1. Automated: Challenges should be easy to automatically gen-
erate and grade by a computer.

2. Open: The underlying database(s) and algorithm(s) used to
generate and grade the challenges should be public. This
property is in accordance with Kerckhoffs’ Principle, which
states that a system should remain secure even if everything
about the system is public knowledge [14].

3. Usable: Challenges should be easily solved in a reasonable
amount of time by humans. Furthermore, challenges should
strive to minimize the effect of a user’s language, physical
location, education, and/or perceptual abilities.

4. Secure: Challenges should be difficult for machines to solve
algorithmically.

Figure 1: An example of our video CAPTCHA.



The most common type of CAPTCHA requires a user to tran-
scribe distorted characters displayed within a noisy image (such as
in [4]). The algorithms and data used to automatically generate
these challenges are publicly available, but not only do many users
find them frustrating, automated programs have been successful at
defeating them. For example, researchers have developed an attack
against Microsoft’s Hotmail CAPTCHA that yields a 60% success
rate [28]. The need for a new CAPTCHA that is automated, open,
usable, and secure arises.

We present a new type of CAPTCHA, in which a user must
provide three words (tags) describing a video taken from a public
database (see Figure 1; an online demonstration is also available1).
Words may be submitted as the video plays, i.e. the user does not
have to wait for the video to finish before submitting their three
words. In its simplest form, a challenge is passed if any of the
three submitted tags match an author-supplied tag associated with
the video. This challenge is similar to the image labeling game
known as ESP created by von Ahn et. al [27], in which people
are randomly paired up and then try to guess a common tag for an
image. Our video CAPTCHA is similar to playing a game of ESP
using videos, but where one player’s responses (the ground truth
set) are automatically generated from tags associated with videos
in the database.

Due to the inherent ambiguity of natural language, misspellings
by the authors of the videos, and inconsistencies in tagging behav-
iors, we hypothesized that exact matching of author-supplied tags
would be a difficult task. However, in our first user study, the hu-
man success rate for exact matching of author-supplied tags was
75%. The goal of this research was to further improve the human
success rate on our video CAPTCHA, while maintaining security
against a tag frequency-based attack, where the three tags estimated
to have the highest frequency (i.e. are associated with the largest
number of videos) are submitted. We improve usability by expand-
ing the user-supplied tags and the ground truth tags, and by allow-
ing approximate string matching. To maintain security, we reject
tags estimated to have a frequency greater than or equal to a given
rejection threshold.

To test the usability and security of our CAPTCHA, we have
conducted two user studies and simulated a frequency-based attack
against a sample of challenges. Our first user study was used to
explore possible grading functions and to determine the appropri-
ate parameter values for the second user study. In the first user
study, participants were only instructed to tag the videos and their
responses were not graded. However, participants in the second
user study were told whether they had passed or failed the video
CAPTCHAs. For both user studies and the frequency-based at-
tack, success rates were observed over the space of usability and
security parameters. In the second user study, it was possible to in-
crease human success rates from 70% (exact matching author tags)
to 90% while maintaining an attack success rate of approximately
13%. These success rates are comparable to existing CAPTCHAs.
In addition, we observed that different balances between security
and usability could be achieved by modifying the generation and
grading function parameters (see Table 8).

From our initial investigation, it appears that our video CAPTCHA
is usable and secure. In addition, it is semi-automated (a human
may be needed to ensure that the content is appropriate and the
tags are in a given language), and open (all algorithms and the
database used to generate challenges are publicly available). Our
video CAPTCHAs may not be accessible to those with hearing or
visual disabilities, and toward that end we would like to compare

1Online at http://www.cs.rit.edu/~dprl

the usability of our system to strictly image-based or audio-based
versions in the future. Currently we have explored only a single
attack type, and acknowledge that other attacks may be more suc-
cessful, such as submitting words detected in video frames or au-
dio.

In the remaining sections of this paper, we outline our data sam-
pling technique, the definition of our CAPTCHA generation and
grading functions, report results from an attack simulation and two
user studies, and finally conclude and recommend future avenues
of research.

2. COLLECTING VIDEO SAMPLES
For our video dataset, we chose to utilize YouTube.com, which

is currently the largest user-generated content video system avail-
able [2]. YouTube currently stores and indexes close to 150 million
videos. Ideally, we would like to randomly sample from this large
database, but this is not possible, as no comprehensive list of videos
is available [20]. There are also restrictions on the number of API
requests allowed per day and the number of results returned per
query.

Randomly generating YouTube video identifiers (IDs) would yield
a true random sample, but collecting a large sample in this fashion
is impractical. YouTube video IDs are 11 characters long with a
character set consisting of lower case letters (a-z), uppercase let-
ters (A-Z), numbers (0-9), dashes (-), and underscores (_) for a
total of 64 different characters. Therefore, there are 6411 ≈ 7.4 ×
1019 possible IDs. Given that there are approximately 1.5 × 108

videos on YouTube, the probability of randomly generating a valid
video ID is approximately 2×10−12. Clearly, this is not a tractable
method for collecting large samples.

A common method used for sampling hidden populations where
direct interaction with individuals would be difficult is known as
snowball sampling [10]. An s stage k name snowball sample is
similar to a breadth-first search where a fixed number of children
are selected at random at each node in the search tree. The sampling
procedure is as follows:

1. From the population, pick a random sample of individuals
(Stage 0).

2. Each individual in the current stage names k individuals (chil-
dren) at random.

3. Repeat for s stages.

Recently, this sampling technique has been used to sample large so-
cial networks, including YouTube.com [20]. A common criticism
of snowball sampling is that it biases results towards individuals
who are connected to the entry points. Therefore, we chose to use
random walks, which are a form of randomized local search. This
technique has been previously used for sampling video data [12].

One can model YouTube as an undirected, bipartite graph G.
The vertices in the graph consist of two disjoint sets: tags U and
videos V . The edges in the graph are of the form (u, v) and (v, u)
such that u ∈ U and v ∈ V ; edges represent associations be-
tween videos and tags. Given the YouTube video-tag graph G, a
maximum walk depth m, and a dictionary D, the algorithm below
returns a random walk of the graph in the form of an ordered list P
of video-tags pairs (v,A).

RANDOMWALK(G,m,D)

1. Create an empty list, P ← ∅, and counter i← 0.
2. Randomly select a walk depth d, where 1 ≤ d < m.
3. Randomly select a starting tag t from dictionary D.
4. Located the tag vertex u corresponding to t in G.

http://www.cs.rit.edu/~dprl


Figure 2: Log scale plot of estimated tag frequencies for 86,368
YouTube videos. Tags are listed in increasing frequency along
the x axis, and the y axis shows tag counts.

5. While i < d:

(a) Select a random edge (u, v) in G, where v is a video
vertex.

(b) Given the tags A on the video v, append (v,A) to P .
(c) Select a random edge (v, w) in G where w is a tag as-

sociated with video v.
(d) Assign u← w and increment i.

6. Return the list of video-tag pairs P .

In our experiments, we used a maximum depth of 100 (m =
100), to allow walks of reasonable depth, while preventing walks
from becoming stuck in local neighborhoods or connected compo-
nents in the graph. For our dictionaryD, we used the English word
list available on most Unix-based computers. We used YouTube
API calls to obtain the video and tag vertices; note that there is
a limit on the number of videos returned for a given tag query (a
maximum of 1000).

Our tag frequency distribution was estimated from a set of 86,368
videos collected from many random walks. We plotted the tags in
increasing order of frequency and observed that the shape of the
curve was exponential (see Figure 2). A small number of tags are
used very frequently, while most others are used infrequently.

3. CHALLENGE GENERATION
Given the YouTube graph G, a maximum walk depth m, a dic-

tionary D, a tag frequency distribution estimate F , a maximum
number of related tags to add n, and a rejection threshold t, the
CAPTCHA generation algorithm below returns a pair (v,GT ) con-
taining a video and a set of acceptable ground truth tags.

VIDEOCAPTCHA(G,m,D, F, n, t)

1. A random walk of the video-tag graph G is performed to
maximum depth m using dictionary D to choose a video.
The last (most recent) video v and its tags A are stored:
(v,A) = RANDOMWALK(G,m,D)

2. A list of videos R which are related to video v is obtained
from G. In our case, this was performed using the YouTube
API, which returns at most 100 video-tags pairs: (vi, Ai)

3. Generate up to n additional tags from related videos:
E = RELATEDTAGS(A,R, n)

4. Using the tag frequency distribution estimate F , remove tags
with a frequency greater than or equal to t:
GT = REJECTFREQUENTTAGS(A ∪ E,F, t)

5. Return the selected video and a preprocessed version of the
ground truth tag set: (v, PREPROCESS(GT ))

To improve the usability of our CAPTCHA, we add tags from
related videos to the ground truth tag set. RELATEDTAGS, RE-
JECTFREQUENTTAGS, and PREPROCESS are defined in Sections
3.3, 3.4 and 4.1, respectively. To maintain security we filter tags
estimated to occur frequently in the database. Details regarding
ground truth tag set generation are described in the following sub-
sections.

3.1 Related Videos
YouTube provides a list of up to 100 related videos for each

video. Unfortunately, the details of how the related videos are se-
lected are not public. Relatedness seems to involve some combina-
tion of the similarity of tags, the number of viewings a video has
received, video co-views and possibly other factors. The use of
related videos exploits social structure within the video database.
The hope is that accepting tags from related videos will be help-
ful for users and difficult for attackers to construct or learn models
for these social tagging patterns. For example, consider a video
tagged with {obama, president} which has a related video that is
tagged with {barack, obama, president}. In our approach we as-
sume that “barack” is likely a valid tag for the original video, even
though the person that that posted the video did not provide it.

For this first investigation, we chose to use the set of related
videos that YouTube provided, and left other techniques as future
work. An alternate strategy would be to query using combinations
of the tags on a video, the maximum number of which would be:

nX
i=1

 
n

i

!
= 2n − 1

Note that each tag-based query returns at most 1000 videos, so
this technique only provides a partial view of videos in the
database (i.e. our access to the video graph G is limited).

Tags from related videos also provide a form of social spell check-
ing. For example, we observed that a video of the magician Criss
Angel had many related videos which had been tagged as “Chris
Angel” or “Kris Angel”. By adding related tags, we are able to
allow for common misspellings.

While there are often additional words to be obtained from a
video’s title [7], in our preliminary user study we found that adding
titles did not substantially increase the usability of the system (e.g.
we observed a decrease in security of 5% and only an increase in
usability of 0.3% relative to matching against only author-supplied
tags). In addition, we could not estimate the security impact of
adding title words using our tag frequencies (which are calculated
over tag space, not title space), and so we decided not to allow title
words.

3.2 Cosine Similarity of Tag Sets
To select tags from those videos that have the most similar tag set

to the challenge video, we performed a sort using the cosine sim-
ilarity of the tags on related videos and the tags on the challenge
video. The cosine similarity metric is commonly used in informa-
tion retrieval to compare text documents [25]. The cosine similarity



between two vectors A and B can simply be expressed as follows:

SIM(A,B) = cos θ =
A ·B
‖A‖‖B‖

The dot product and product of magnitudes are:

A ·B =

nX
i=1

aibi

‖A‖‖B‖ =

vuut nX
i=1

(ai)2

vuut nX
i=1

(bi)2

In our case, A and B are binary tag occurrences vectors (i.e.,
they only contain 1’s and 0’s) over the union of the tags in both
videos. Therefore, the dot product simply reduces to the intersec-
tion size of the two tag sets (i.e., |At ∩ Rt|) and the product of
the magnitudes reduces to the square root of the number of tags in
the first tag set times the square root of the number of tags in the
second tag set (i.e.,

p
|At|

p
|Rt|). Therefore, the cosine similarity

between a set of author tags and a set of related tags can easily be
computed as:

cos θ =
|At ∩Rt|p
|At|

p
|Rt|

Tag Set Occ. Vector dog puppy funny cat
At A 1 1 1 0
Rt B 1 1 0 1

Table 1: Example of a tag occurrence table.

Consider an example where At = {dog, puppy, funny} and
Rt = {dog, puppy, cat}. We can build a simple table which cor-
responds to the tag occurrence over the union of both tag sets (see
Table 1). Reading row-wise from this table, the tag occurrence
vectors for At and Rt are A = {1, 1, 1, 0} and B = {1, 1, 0, 1},
respectively. Next, we compute the dot product:

A ·B = (1 ∗ 1) + (1 ∗ 1) + (1 ∗ 0) + (0 ∗ 1) = 2

The product of the magnitudes can also easily be computed:

‖A‖‖B‖ =
√

3
√

3 = 3

Thus, the cosine similarity of the two videos is 2
3

= 0.6̄.

3.3 Adding Related Tags
Once the related videos are sorted in decreasing cosine similar-

ity order, we introduce tags from the related videos into the ground
truth. The maximum number of characters allowed in a YouTube
tag set is 120. Therefore, the tag set could theoretically contain up
to 60 unique words (each word would have to be a single charac-
ter). The maximum number of related videos which YouTube pro-
vides is 100. Therefore, adding all of the related tags could poten-
tially add up to 6000 new tags. We chose to limit the upper bound
by adding up to n additional unique tags from the related videos
(sorted in decreasing cosine similarity order). The following func-
tion produces up to n related tags, given a challenge video’s tags
A, and a set of related videos R.

RELATEDTAGS(A,R, n)

1. Create an empty set, Z ← ∅.

2. Sort related videosR in decreasing cosine similarity order of
their tag sets relative to the tag set A.

3. For each related video r ∈ R:

(a) If the number of new tags on the related video r is ≤
n− |Z|, add them all to Z.

(b) Otherwise, while the related video r has tags and while
|Z| < n:

i. Randomly remove a new tag from the remaining
tags on the related video r, and add this tag to Z.

4. Return Z.

This technique will introduce up to n additional tags to the ground
truth set. In the case where we have already generated n−b related
tags and the next related video contains more than b new, unique
tags, we cannot add all of them without exceeding our upper bound
of n tags. For example, consider the case in which we wish to gen-
erate 100 additional tags (n = 100) and we have already generated
99 tags. If the next related video has 4 new tags, we cannot include
all of these in the new tag set, and so we randomly pick one to avoid
bias.

3.4 Rejecting Frequent Tags
Security against frequency-based attacks (an attack where the

three most frequent tags are always submitted) is maintained through
the parametersF and t in the challenge generation function VIDEO-
CAPTCHA (see earlier in this section). F is a tag frequency distri-
bution (see Figure 2) and t is a frequency rejection threshold. Dur-
ing challenge generation, after author-supplied tags and tags from
related videos have been added to the ground-truth set, tags with
a frequency greater than or equal to t in F are removed from the
ground-truth tag set.

REJECTFREQUENTTAGS(S, F , t)

1. Initially, GT ← S.
2. For each tag g ∈ GT :

(a) If F (g) ≥ t, remove g from GT .

3. Return GT .

4. GRADING FUNCTION
The generation of a video CAPTCHA (see Section 3) returns a

challenge video v and a set of ground truth tags GT . Given the
challenge video v, the set of ground truth tags GT , the set of user
response tags U , and binary variables s and l determine whether to
perform stemming (s) and/or to use inexact matching (l), we grade
responses as follows:

GRADE(v,GT,U, s, l)

1. Preprocess the user supplied tags:
P ← PREPROCESS(U).

2. If s = TRUE, P ← P ∪ STEM(P )
3. If l = TRUE

(a) If ∃t ∈ GT and ∃p ∈ P such that
NORMLEVENSHTEIN(t, p) ≥ 0.8, return PASS.

(b) Otherwise, return FAIL.

4. Otherwise,

(a) If GT ∩ P 6= ∅, return PASS.
(b) Otherwise, return FAIL.

Details about PREPROCESS, STEM and NORMLEVENSHTEIN
are provided in the following subsections.



4.1 Preprocessing
A stop word list is a list of common words which are filtered

prior to processing because they are unlikely to add additional in-
formation or context. For instance, it has been shown that over
50% of all words in a typical English passage can be constructed
using a list of only 135 words [13]. We chose to utilize a list of
177 stop words provided in the popular Snowball string processing
language developed by Martin F. Porter. Users are prevented from
submitting stop words as tags.

Prior to grading, all tags are preprocessed using the function
PREPROCESS, described here. The tags are converted to lower case
and punctuation is stripped to remove the effects of inconsistent
capitalization or punctuation. Additionally, only the first three tags
are used in grading. For example, given the input string “Barack
Obama U.S.A. man”, the preprocessor will output the set: {barack,
obama, usa}.

4.2 Expanding Tags through Word Stemming
To increase the likelihood of passing challenges, the user-supplied

tags U may be expanded through word stemming using the STEM
function. A stemmer is an algorithm for reducing inflected or de-
rived words to their root [18]. The root of a word is the word minus
any inflectional endings, such as ‘s’, ‘ing’, etc. The Porter Stem-
mer2 is frequently used in information retrieval systems; it uses a
deterministic set of rules to recover word roots [21].

For example, if we allow stemming and if “dogs” ∈ U and “dog”
∈ GT , the challenge is passed (where as it otherwise might not be,
depending on the set of related tags). A significant benefit of this
type of expansion is that it is a repeatable, algorithmic technique
which, at most, doubles the cardinality of U . If a response tag is
already in the stemmed form, for example “dog”, the stemmer will
simply return the same tag.

Chew suggested the use of a thesaurus to accept synonyms in the
image-based naming CAPTCHA [5] where the task was to guess
the common subject of six images. For example, a video about
carbonated soft drinks might be tagged as “soda” by one user and
“pop” by another; using synonyms we might identify a match. To
obtain synonyms, we used the freely available thesaurus from the
Moby Project3. However, in our first user study we found that
that the addition of synonyms drastically compromised security and
only marginally improved usability, so we decided not to use this
technique.

4.3 Allowing Inexact Matching
Many users may make spelling or typing mistakes when com-

pleting a challenge. Therefore, we can also boost usability by per-
forming inexact matching between user tags and ground truth. We
utilized the well known string edit distance, or Levenshtein dis-
tance [17]. The Levenshtein distance is the minimum number of
operations (insertions, deletions, or substitutions) required to con-
vert one string into the other. After computing the Levenshtein dis-
tance, we normalize it into the interval [0.0, 1.0], using the length
of the longer string. Given the two strings, s1 and s2, we compute
the normalized Levenshtein distance as follows:

NORMLEVENSHTEIN(s1, s2) = 1.0− LEVENSHTEIN(s1, s2)

MAX(|s1|, |s2|)

As per Chew’s recommendation in [5], we have chosen to define
a match as a minimum normalized similarity of 0.8. This means
that the larger of two strings of length 1 ≤ l < 5 are allowed no

2Online at http://tartarus.org/~martin/PorterStemmer/
3Online at http://www.gutenberg.org/etext/3202

edits, strings of length 5 ≤ l < 10 are allowed one edit, strings of
length 10 ≤ l < 15 are allowed two edits, etc. More generous or
conservative approximate matches could be used with correspond-
ing usability/security tradeoffs.

5. ATTACK SIMULATION
The best way to attack a video CAPTCHA using tag frequency

data alone is to submit the three tags which label the largest set
of videos (i.e. where the union of the video sets is the largest).
Increasing usability by extending the ground truth tag set (as ex-
plained in the previous sections) will typically result in decreasing
security because it allows an attacker a larger set of tags to match
against.

The attack success rate may be reduced by pruning frequently
occurring tags from the ground truth tag set, so that tags with an
estimated frequency ≥ t are not accepted. However, an intelli-
gent attacker would then select the three most frequent tags such
that their estimated probabilities are slightly less than the pruning
threshold (i.e. t− ε). This is the attack which we replicated.

We performed multiple random walks to obtain a testing sample
for this attack. The sample contained 5146 challenge videos, with
295,274 related videos used for challenge generation, (299,796 unique
videos in total). For our experiment, we varied t in the interval
0.001 ≤ t ≤ 0.01 by steps of 0.001, and the number of related
tags n in the interval 0 ≤ n ≤ 200 in steps of 5 tags. Note that
t = 1.0 represents the case of no tag pruning. For each of 11 re-
jection threshold values, we calculated the best set of attack tags
and used these to attack the 5146 videos, using the tag frequency
estimate described in Section 2 (see Table 2). The results of the
experiment are shown in Figure 3.

Given an attack response (A, a set of three tags) and an estimate
of the frequency of tags labeling a video in the database (F ), we
can estimate the success rate of the attack for the control condition,
where tags on a video must be matched exactly (Ŝc):

Ŝc(A) =
X
a∈A

F (a)

Ŝc is a pessimistic estimate, as it assumes that each tag labels differ-
ent videos (i.e. the sets of videos labeled by each tag are disjoint).

Table 2 shows the tags used in our frequency-based attack, along
with Ŝc, and the number of tags that were pruned from our tag
frequency estimate for each threshold value t. For the control con-

t Best Attack Tags # Pruned Ŝc(A)
1.0 [music, video, live] 0 0.1377
0.01 [dj, remix, vs] 37 0.0291
0.009 [girl, school, el] 44 0.0256
0.008 [animation, michael, star] 49 0.0237
0.007 [concert, news, day] 67 0.0207
0.006 [fantasy, dragon, rb] 92 0.0179
0.005 [islam, humor, blues] 129 0.0148
0.004 [real, bass, 12] 184 0.0120
0.003 [uk, spoof, pro] 302 0.0090
0.002 [seven, jr, patrick] 570 0.0060
0.001 [ff, kings, ds] 1402 0.0030

Table 2: Tags used in our frequency-based attack. For each
pruning threshold, we show the attack tags used, their esti-
mated success rate for the control condition (Ŝc), and the num-
ber of tags pruned from our tag frequency estimate.

http://tartarus.org/~martin/PorterStemmer/
http://www.gutenberg.org/etext/3202


dition, Ŝc provided estimates that were always slightly larger than
the observed success rates shown in Figure 3. As tags are added
however, the estimate becomes increasingly optimistic and unreli-
able.

We observed that, in general, a smaller pruning threshold reduces
the success of the attack and a larger number of related tags in-
creases the success of the attack. Figure 3 plots the attack success
rate as the tag rejection threshold t and the number of related tags
n is varied. There is a nearly linear trade-off between t and n for
the attack success rate (see the roughly linear cut across the colored
tiles in Figure 3). Note that the attack success rate of the control
(no pruning and no additional related tags) is approximately 13%.

6. USER STUDIES
To analyze the usability of our video CAPTCHA, we conducted

two anonymous, online user studies. IP addresses of participants
were recorded to protect against multiple responses from a single
user but were discarded during analysis. Friends, family, and col-
leagues were invited to participate, and a college-wide invitation
was also emailed to students. The majority of our participants were
males in the 18-24 age group with at least some college experience
and were familiar with online videos. We acknowledge the fact that
participants of this demographic may perform better than other de-
mographics (for example, elderly people with little familiarity with
online videos). Complete demographics are presented in Table 3.

6.1 User Study 1: Video Tagging
To study tagging behavior and to choose appropriate parameters

for our grading function, we first conducted a user study in which
we had participants tag a set of 20 randomly ordered videos with
3 unique tags each. The videos were manually selected to ensure
appropriate content (this is a modification of the first step in the
VIDEOCAPTCHA function for generating challenges).

In order to familiarize the participants with the task, two practice
videos were shown to the participants, one of which was particu-
larly challenging due to the use of a foreign language in the video.
The tags from the practice videos were recorded, but were not used
during analysis. Participants were instructed to tag each video with
three unique, non-stop words. The participants were not required to
watch the entire video before submitting their tags. We recorded the
time it took the participants to complete each challenge using both
client-side Javascript and server-side logs analysis. The recorded
times included the time needed to: 1) watch some (or all) of the
video, 2) think of three reasonable tags, 3) type their responses, and
4) press the submit button. The participants were then instructed to
rate how difficult it was to tag the video using the following scale
(both numbers and descriptions were shown): 5 (Great Effort), 4
(Moderate Effort), 3 (Some Effort), 2 (Little Effort), and 1 (No Ef-
fort).

After completing the tag and rate task for each of the 20 videos,
the participants were asked the following questions in an exit sur-
vey:

1. Which task do you enjoy completing more?

(a) Guessing an appropriate tag for a video
(b) Transcribing a string of distorted text
(c) No preference

2. Which task do you find faster to complete?

(a) Guessing an appropriate tag for a video
(b) Transcribing a string of distorted text
(c) Neither

User Study 1 User Study 2
Age group
18-24 74.82% (107) 77.71% (143)
25-34 13.28% (19) 11.95% (22)
35-44 3.496% (5) 4.891% (9)
45-54 4.195% (6) 2.173% (4)
55-65 2.797% (4) 2.717% (5)
65-74 0.699% (1) 0.543% (1)
75+ 0.699% (1) 0.0% (0)
Gender
Male 79.02% (113) 83.69% (154)
Female 20.97% (30) 16.30% (30)
Highest level of education completed
Some High School 0.0% (0) 0.543% (1)
High School 2.797% (4) 4.891% (9)
Some College 46.85% (67) 47.82% (88)
Associate’s 4.895% (7) 6.521% (12)
Bachelor’s 33.56% (48) 30.43% (56)
Master’s 11.18% (16) 4.347% (8)
Professional Degree 0.699% (1) 0.0% (0)
PhD 0.0% (0) 5.434% (10)
Number of online videos watched per month
0-4 17.48% (25) 17.93% (33)
5-14 30.76% (44) 30.43% (56)
15-30 23.07% (33) 20.65% (38)
31+ 28.67% (41) 30.97% (57)
Have you ever uploaded a video before?
Yes 60.83% (87) 64.67% (119)
No 39.16% (56) 35.32% (65)
Which do you find more enjoyable?
Transcribing Distorted Text 15.38% (22) 20.10% (37)
Tagging a Video 61.53% (88) 58.15% (107)
No Preference 23.07% (33) 21.73% (40)
Which do you think is faster?
Transcribing Distorted Text 64.33% (92) 59.78% (110)
Tagging a Video 19.58% (28) 27.17% (50)
Neither 16.08% (23) 13.04% (24)

Table 3: Participant demographics and exit survey responses.

See Table 3 for the results of the exit survey. The participants were
also given a chance to provide additional comments and a field to
enter their email address if they wished to be contacted again in the
future.

6.2 User Study 2: Video CAPTCHAs
This study was nearly identical to the first with the following

modifications:

• Users were told whether they had passed or failed each chal-
lenge.
• Challenge videos were selected using a random walk with

manual filtering.
• An open source flash video player was used to stream the

videos instead of the YouTube.com player to mask the ID of
the challenge video.

An effort was made to keep the user interface similar across
both the user studies. In the first user study, participants were in-
structed to submit three tags for each video (the challenges were
not graded). However, in the second user study, the instructions
emphasized that the participants were completing a challenge, or



Figure 3: Success rates for frequency-based attack on 5146 videos (no stemming and exact matching of tags). The control is located
at the leftmost corner (0 related tags added, no pruning, and an attack success rate of 12.86%). If all four corners of a tile have equal
or better security than the control, the tile is shaded. Tags used for each pruning threshold differ (see Table 2).

test, which would be graded.
Unlike the first user study, the 20 challenge videos were se-

lected using a random walk (see Section 3). However, the videos
were manually inspected for inappropriate content; we rejected two
videos which had questionable adult content and five videos which
contained strictly non-English tags. Other than that, all other videos,
regardless of length, content, or rating were allowed.

In this user study, we were also concerned with people trying to
defeat our video CAPTCHA. We pre-fetched the video files from
YouTube and streamed them from our own servers using a free open
source flash video player. If we had chosen to use the YouTube
flash video player, the participants could either view the page’s
source to expose the YouTube video ID or click on the player it-
self to be redirected to the video on YouTube.com (which would
reveal the author’s tags).

In order to inform the user whether they passed or failed the chal-
lenges, we had to grade responses. The selection of parameters for
the grading function was based on an analysis of the human success
rates (Sh) in the first user study, and the attack success rates (Sa) in
our simulated attack. We provided feedback using the most usable
generation parameters for VIDEOCAPTCHA that did not rely on
stemming or inexact matching but whose parameters still provided
better or equal security than the control. We chose to use this pa-
rameter setting so as to avoid discouraging participants, while using
the strictest grading protocol (exact matching of tags).

We will define our parameter space τ as a 4-tuple 〈n, t, s, l〉.
Our control (no related tags, no pruning, no stemming, and ex-
act matching) is τc = 〈0, 0, FALSE, FALSE〉. From our first user
study, we observed a human success rate for the control condition
of Sh(τc) = 0.75. In the attack simulation, we observed a suc-

cess rate of Sa(τc) = 0.1286. We fixed s and t as false, and then
searched over n and t to find a condition that maximized the hu-
man success rate, while insuring that the attack success rate was no
better than the control condition. We found that τ̂ = 〈110, 0.005,
FALSE, FALSE〉 satisfied these criteria. The second user study was
conducted using this parameter setting (τ̂ ).

We computed the effect of varying the generation and grading
parameters on human success rates (Sh(τ)) in a post-processing
fashion. These results are summarized in Table 8; complete results
may be found in [15].

6.3 User Study Results
A set of three metrics for evaluating the usability of CAPTCHAs

are presented in [29]. To assess errors, we observed the human
success rates (measuring how accurately users can complete the
task). To evaluate efficiency, we measured user response time, and
to evaluate satisfaction we measured the perceived difficulty of the
users using a 1-5 scale.

The median completion time for our task was 17 seconds (see
Table 6). The mode of the perceived difficulty for our CAPTCHA
was 2 (see Table 7). As expected, the difficulty ratings and the
median completion times are strongly correlated (the Pearson’s co-
efficients were ρ = 0.9492 and ρ = 0.9898 for the first and second
user studies, respectively). Detailed completion times and difficulty
ratings can be found in Tables 4 and 5.

We also allowed participants to provide comments on the exper-
iment. Here are a few of the comments we received:

• "You overestimate the public’s ability to spell"

• "Deciphering the scrambled text of some sites is almost im-
possible, and it has stopped me from entering several online



contests that were using it."

• "The only reason I prefer distorted text to video tagging is
the time it takes."

• "This is a great idea, and it’s ... more fun than [a popular
text-based CAPTCHA]"

• "CAPTCHAs have become too distorted to read. It usually
takes me three or four tries to get one right!"

• "Some videos were very easy to figure out. Others were cryp-
tic."

Difficulty User Study 1 User Study 2
1 17.344 13.449
2 20.696 15.668
3 24.640 20.579
4 29.334 24.967
5 42.798 30.967

Table 4: Median completion time (in seconds) grouped by per-
ceived difficulty ratings.

Difficulty User Study 1 User Study 2
1 27.657% (791) 23.315% (858)
2 41.118% (1176) 37.853% (1393)
3 22.972% (657) 26.413% (972)
4 6.643% (190) 9.701% (357)
5 1.608% (46) 2.717% (100)

Table 5: Distribution of perceived difficulty ratings.

User Study 1 User Study 2
Mean (µ) 29.688 22.038

StdDev (σ) 34.746 23.578
Median 20.642 17.062

Table 6: Completion time statistics (in seconds).

In both the attack simulation and user studies, we varied the chal-
lenge generation parameters n and t in the ranges: t ∈ {0.001,
0.002, . . . , 0.01, 1.0} and n ∈ {0, 5, . . . , 195, 200}. As the prun-
ing threshold t decreases, more tags are pruned from the ground
truth set and the human success rate decreases (see Figures 4 and
5). The human success rate increases as the number of additional
related tags n increases.

The human success rate for the control in the first user study is
located at the leftmost corner of Figure 4. The addition of only 5 re-
lated tags improves the usability of the CAPTCHA approximately
6% regardless of the pruning level. While many of the parameter
settings yield a higher human success rate than the control, a pa-
rameter setting is generally only useful if it does not have a higher
attack success rate than the control.

The human success rates from the first user study with no stem-
ming and exact matching are plotted in Figure 4 while the corre-
sponding human success rates from the second user study are plot-
ted in Figure 5. A comparison of the human success rates in the
second user study, and attack success rates in the attack simulation
over the parameter space are presented in Table 8.

User Study 1 User Study 2
Mean (µ) 2.1343 2.3066

StdDev (σ) 0.9482 1.0181
Mode 2 2

Table 7: Perceived difficulty rating statistics.

Parameter set (τ ) Success Rates
Condition n t s l Sh(τ) Sa(τ) Gap(τ)
Control 0 1.0 0.6973 0.1286 0.5687
Most Usable 100 0.006 0.8828 0.1220 0.7608
Most Secure 30 0.002 0.7502 0.0239 0.7263
Largest Gap 45 0.006 0.8682 0.0750 0.7931
Most Usable 100 0.006 ! 0.8896 0.1226 0.7670
Most Secure 25 0.002 ! 0.7548 0.0209 0.7339
Largest Gap 45 0.006 ! 0.8755 0.0750 0.8005
Most Usable 100 0.006 ! 0.9000 0.1280 0.7719
Most Secure 15 0.003 ! 0.7671 0.0233 0.7438
Largest Gap 25 0.006 ! 0.8611 0.0526 0.8084
Most Usable 90 0.006 ! ! 0.9019 0.1263 0.7755
Most Secure 15 0.003 ! ! 0.7690 0.0237 0.7453
Largest Gap 25 0.006 ! ! 0.8649 0.0526 0.8122

Table 8: Human (Sh) vs. attack (Sa) success rates, for the second
user study (Section 6.2) and attack simulation (Section 5). The param-
eter space for τ includes the number of related tags added (n), the tag
frequency rejection threshold (t), and whether word stemming (s) and
approximate tag matching (l) were allowed. Gap(τ) is the difference
between the human and attack success rates for parameter set τ .

As Table 8 indicates, the human success rate on the control is
only 69.73%, and the attack success rate is 12.86%. For all combi-
nations of whether stemming (s) and inexact matching (l) are used,
the table provides the most usable and secure related tag (n) and
frequency threshold (t) values where the human rate does not drop
below the control, and the attack rate does not exceeed the control.
For parameter set τ = 〈90, 0.006, TRUE, TRUE〉 we were able to
boost the usability (Sh) to over 90% and even increase security
slightly (decreasing Sa by 0.23% from the control).

Table 8 illustrates that our video CAPTCHA can be parameter-
ized to allow for different tradeoffs between usability and security.
As one would expect, fewer tags need to be added to increase hu-
man success rates over the control if inexact matching is permitted
(l = TRUE). The largest gap between human and attack perfor-
mance is observe in the bottom entry of Table 8, where both stem-
ming and inexact matching are used, with an 86% human success
rate and only a 5% attack success rate.

In the first user study, we were able to outperform the control
by including as few as 5 additional related tags. However, in the
second user study, we must include 10 or more related tags for
all t < 1.0. In the first user study, we were able to reduce the
attack success rate to nearly 1.2% (adding 5 related tags, pruning
at 0.003, using stemming and exact matching). However, in the
second user study, the best security level which we were able to
achieve while maintaining the control success rate for humans was
2.1% (adding 25 related tags, pruning at 0.002, using stemming and
exact matching).

The human success rates are slightly lower in the second user
study than in the first user study. This can be explained by the sam-
pling method used: the videos used for the first user study were
manually selected while the videos used in the second user study



Figure 4: The human success rates from the first user study with no stemming and exact matching. The control is located at the
leftmost corner (0 related tags added, no pruning, and a human success rate of 75%). If all four corners of a tile have better usability
than the control, the tile is shaded.

Figure 5: The human success rates from the second user study with no stemming and exact matching. The control is located at the
leftmost corner (0 related tags added, no pruning, and a human success rate of 69.73%). If all four corners of a tile have better
usability than the control, the tile is shaded.



were randomly selected. The trends and patterns of the human suc-
cess rates are uniform across both samples as shown in Figure 4 and
Figure 5. The other conditions (using/not using stemming and/or
exact matching) also exhibit similar trends to that of the samples
presented (see Appendix C of [15]).

7. CONCLUSION AND FUTURE WORK
We have proposed the first CAPTCHA that uses video under-

standing to distinguish between humans and machines. It has nearly
all of the desirable properties outlined in the introduction: chal-
lenges can be semi-automatically generated, graded automatically,
the challenge design and data are publicly available, and challenge
generation and grading may be parameterized in order to achieve
a desired balance between usability and security. Using a video
database known to be free of inappropriate content, our video
CAPTCHA has all four desirable properties (no human inspec-
tion is needed, and generation becomes fully automatic). The re-
sults of our attack estimate and second user study suggest that our
video CAPTCHAs have comparable usability and security to ex-
isting CAPTCHAs (see Table 9). In fact, more than half (60%) of
the participants in our second user study indicated that they found
the video CAPTCHA more enjoyable than traditional CAPTCHAs
in which distorted text must be transcribed. These results are en-
couraging and suggest that video CAPTCHAs may provide a viable
alternative to text-based CAPTCHAs.

Success Rates
CAPTCHA Type Human Machine
Microsoft Text-based 0.90 [3] 0.60 [28]
Baffletext Text-based 0.89 [4] 0.25 [4]
Handwritten Text-based 0.76 [23] 0.13 [23]
ASIRRA Image-based 0.99 [6] 0.10 [9]
Video τ = 〈15, 0.003, T, T〉 0.77 0.02

τ = 〈25, 0.006, T, T〉 0.86 0.05
τ = 〈90, 0.006, T, T〉 0.90 0.13

Table 9: A comparison of human and attack success rates for
our video CAPTCHA (for different parameter settings) with
other CAPTCHAs.

In this first investigation, the security of the video CAPTCHA
was only tested with a tag frequency-based attack. We acknowl-
edge that other attacks may perform better. For example, computer
vision could be used to locate frames with text-segments in them,
and then detect and submit words using optical character recogni-
tion (OCR). If videos were pre-scanned for text content, text could
be detected in a pre-processing phase. These words could then be
marked as taboo tags (similar to how taboo tags are used in the ESP
game [27]), or be weighted down (requiring at least one additional
matching tag). Another attack could use Content-based Video Re-
trieval systems to locate videos with similar content (and then sub-
mit their tags). Audio analysis might also give an indication as to
the content of the video.

It would be interesting to compare the usability of the video
CAPTCHA under all combinations of audio and video being present
or absent. Such a study would help us evaluate the usability of
our video CAPTCHA for individuals with limited vision or hear-
ing abilities. The current CAPTCHA was tested only for English-
speaking users located in the United States, trying to match English
tags. Another interesting experiment would be to see if using dic-
tionaries from other languages to seed random walks during gen-
eration would yield usable challenges for other geographic regions

and cultures.
Finally, the tag-based challenge generation technique presented

is not video-specific. We can imagine CAPTCHAs being devel-
oped which utilize social structure in other types of tagged data,
for example using images from Flickr.com. An additional study
could compare the usability of our video CAPTCHA to one where
only a single frame of the video is shown to the user. This would
test the hypothesis that tagging full motion video is easier for users
than tagging individual video frames (still images).
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