
Evaluating the Usability of Usage Controls
in Electronic Collaboration

José C. Brustoloni, Ricardo Villamarín-Salomón, Peter Djalaliev and David Kyle
Dept. of Computer Science, University of Pittsburgh

210 S. Bouquet St. #6111, Pittsburgh, PA 15260, USA
{jcb,rvillsal,peterdj,dkyle}@cs.pitt.edu

ABSTRACT
Currently, collaborations often require non-disclosure agree-
ments (NDAs). NDAs can be time-consuming and expensive
to negotiate and enforce. Usage controls could be an atrac-
tive alternative or adjunct to NDAs. Usage controls enable
the distributor of a file to limit how recipients of that file
may use it. However, existing usage controls (e.g., PDF’s)
often are software-based and easy to break. They may not
interoperate, and their impact on collaborative workflows is
typically unknown. We designed and implemented operat-
ing system and Web server and browser modifications that
allow hardware-based usage controls to be easily added to
existing software-based ones. This paper describes and eval-
uates our system’s user interfaces. In a user study, untrained
users role-played design engineers in two similar collabora-
tive scenarios with or without usage controls. Users found
the interfaces easy to use, and usage controls had insignif-
icant impact on the completion times and accuracy of the
assigned tasks. These results suggest that our usage control
approach can add security to collaborative workflows with
minimal training and performance penalties.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—ac-
cess controls, authentication, cryptographic controls; C.2.4
[Computer-Communication Networks]: Distributed Sys-
tems—client/server, distributed applications; H.5.2 [Infor-
mation Interfaces and Presentation (e.g., HCI)]: User
Interfaces—graphical user interfaces (GUI), evaluation

General Terms
Security, Human Factors

Keywords
Usage controls, digital rights management, electronic collab-
oration, Trusted Platform Module (TPM)

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.
Symposium on Usable Privacy and Security (SOUPS) 2008, July 23–25,
2008, Pittsburgh, PA USA.
.

1. INTRODUCTION
Organizations are increasingly turning to collaboration in

order to remain competitive. More and more manufacturers
are collaborating in new designs to reduce costs and time-
to-market. Similarly, many retailers are providing detailed
forecasts to suppliers to avoid stock-outs while minimizing
inventory.

While collaboration can make economic sense, it can also
carry great risks. When a manufacturer shares product or
process details, it also risks its intellectual property. Like-
wise, disclosure of a retailer’s forecasts to competitors can
be put the retailer at disadvantage.

Organizations can, to some extent, use non-disclosure a-
greements (NDAs) to mitigate such risks. However, NDAs
can be time-consuming and expensive to negotiate and en-
force. More efficient alternatives are needed.

In response to this need, computer applications increas-
ingly provide usage controls. Usage control enables the dis-
tributor of a file to limit how recipients of that file may use it.
For example, recent versions of Adobe Acrobat and OpenOf-
fice [1] allow the creator of a PDF document to set flags that
prohibit printing or copying content from the document [2].

However, existing usage controls typically have several
shortcomings. First, most of them are purely software-based
and can be defeated by tools or techniques that can be easily
found on the Web. For example, instructions for defeating
PDF’s usage controls are readily available [3]. Second, there
is no standard or uniform method for usage control. There-
fore, usage controls of different applications or systems often
do not interoperate. Third, little is known about the usabil-
ity of usage control in collaborations. If usage controls dis-
rupt collaborative workflows, they would negate the benefits
collaboration was supposed to give.

To overcome the first two of these shortcomings, we de-
signed and implemented operating system modifications that
add hardware-based usage controls to existing software-based
ones. No modification is needed in applications for hardware-
based protection; the modified operating system needs only
the secure digests of the trusted applications. Hardware-
based usage policies are enforced by the operating system
(e.g., UCLinux [4]) in conjunction with a secure coproces-
sor (Trusted Platform Module (TPM) [5]). Usage-controlled
files are stored in an encrypted file system whose secret key
the TPM reveals only when the system is in a trustwor-
thy state. Usage-controlled files may contain software-based
usage policies that applications that open the file are ex-
pected to enforce (e.g., PDF print restrictions). We add
to such files, as metadata, hardware-based usage policies.

Figure 1: OpenOffice dialog for setting security op-
tions in PDF files

These policies may, e.g., restrict the time period and ap-
plications that can open a file. By restricting the appli-
cations that can open a file, hardware-based usage policies
prevent circumvention of the software-based usage policies
contained in the file. For example, only trusted versions
of Acrobat Reader could be able to open usage-controlled
PDF files, while cracked versions of xpdf [6] would be un-
able to do so. We also designed and implemented Web server
and browser modifications that enable secure transmission of
usage-controlled files. The modified Web server sends such
a file to a client only if the client provides an attestation
that the client’s platform is trustworthy, i.e., will enforce
the usage policies received from the server. This attestation
is signed by the client’s TPM.

This paper describes and evaluates the user interfaces we
designed for authoring and accepting usage policies in our
system, overcoming the third above-mentioned shortcom-
ing of existing usage controls. In a user study, untrained
users role-played design engineers in two similar collabora-
tive scenarios with or without usage controls. We found
that usage controls had insignificant impact on the comple-
tion times and accuracy of the assigned tasks. Users found
the interfaces easy to use. They had insignificant trouble
in properly considering documents’ usage policies when de-
ciding whether to accept them and in generating documents
with appropriate usage policies. These results suggest that
our usage control approach can add security to collaborative
workflows with minimal training and performance penalties.

The rest of this paper is organized as follows. Section
2 summarizes relevant aspects of software used in this pa-
per. Section 3 describes our user interfaces, and Section 4
evaluates them in a user study. Finally, Section 5 discusses

Figure 2: xpdf dialog for unprintable files

related work, and Section 6 concludes.

2. BACKGROUND
This section provides a brief overview of relevant features

of software used in this paper.

2.1 Authoring and viewing software-based us-
age policies

Fig. 1 displays OpenOffice’s dialog for setting security
options in PDF files. Such a dialog has been available since
OpenOffice v. 2.0 [1]. A PDF document’s author can disable
high-resolution or any printing, extracting pages, comment-
ing, filling in form fields, inserting, deleting, and rotating
pages, or any changes, content copying, and text access for
accessibility tools.

The xpdf viewer [6] disables certain options, depending
on the security settings of the PDF file being viewed. For
example, Fig. 2 shows the dialog box that xpdf displays
when the user clicks on the icon for printing a file that has
a usage policy that prohibits printing. It should be noted,
however, that PDF is an open standard [2], and xpdf if open-
source software. Instructions for how to modify xpdf so as
to ignore usage policies in PDF files can be easily found on
the Web [3]. Weaknesses in software-based usage controls,
such as PDF’s, motivate our effort to add to them hardware-
based usage controls.

2.2 Operating system modifications
We designed and implemented a Linux Security Module

[7], UCLinux [4], that adds support for TPM-based usage
controls in the Linux operating system. UCLinux requires
that the computer have a TPM v. 1.1b [5] or later and TPM-
aware BIOS and boot loader (e.g., GRUB). Computers with
TPM and TPM-aware BIOS are commercially available from
Lenovo, Dell, HP, and other manufacturers. During boot,
the BIOS measures the integrity of the boot loader and ex-
tends the result into a platform configuration register (PCR)
in the TPM. (PCR values are erased when the system is re-
set. When a value V is extended into a PCR, the TPM
concatenates V and the PCR’s current value, computes the
secure digest, and stores the result into the PCR. The only
two ways to modify a PCR are to reset the system or extend
a value into the PCR.) The boot loader likewise measures
the integrity of the kernel and extends the result into a PCR.
The kernel then performs TCB prelogging : it optimistically
extends into a PCR the expected measurements of every
component in the system’s Trusted Computing Base (TCB).
These expected measurements are found in a configuration
file called TCB list.

The system’s usage-controlled file system (UCFS) has its
secret key sealed by the TPM to the PCR values that re-
sult from the boot sequence and TCB list. Thus, at boot
time, the kernel can retrieve the UCFS’s secret key from the

TPM and mount the UCFS. Hardware-based usage policies
are stored in the respective file’s extended attributes. A file’s
hardware-based usage policy may specify the integrity mea-
surements of programs allowed to open the file. A hardware-
based usage policy may be prepared by the respective file’s
distributor, or received by the file’s recipient. The kernel
enforces only the latter.

During runtime, the kernel measures the integrity mea-
surement of the programs that it executes. When a program
opens or memory-maps a file with received hardware-based
usage policies, the kernel verifies that access is permitted
by those policies. If the current process’s integrity mea-
surement differs from those specified in the file’s received
policies, the open or memory-map call fails.

The kernel also verifies the actual integrity measurement
of each TCB component that it executes, memory-maps, or
opens. If an actual measurement is different from the one in
the TCB list, or a privileged program that is not in the TCB
list is about to be executed, or a privileged user attempts
to log interactively into the system, the system’s integrity
and trustworthiness may soon be violated. The kernel then
performs an operation called root trip: the kernel aborts any
processes with a UCFS file open, unmounts the UCFS, and
erases any copy in memory of UCFS’s secret key and mem-
ory freed as a result of processes’ termination and UCFS’s
unmounting. The kernel also records this event into a PCR.
The kernel then continues the process that caused the root
trip. The system thereafter can be used normally, but UCFS
contents will be unavailable. Because the UCFS’s key is
sealed to the boot-time PCR values, the system will have to
be rebooted and brought to a trustworthy state before the
UCFS can be mounted again.

2.3 Web server and browser modifications
We also designed Web server and browser modifications

for securely transmitting usage-controlled files, and imple-
mented them by modifying Apache and Firefox, respectively.
The modified browser depends on the modified operating
system (e.g., UCLinux), but the modified server does not.

When a file with prepared hardware-based usage policies
is requested, the modified server returns to the client these
policies and asks the client to upgrade the connection to TLS
with a TLS extension. The modified browser displays the
policies to the user. If the user accepts them, the browser
initiates the connection upgrade. Using the TLS extension,
the server obtains an attestation from the client. The at-
testation includes a quote, i.e., the server’s nonce and the
client’s PCR values signed by the client’s TPM, an attesta-
tion identity certificate (AIC), and a measurement log con-
taining the name and value of every integrity measurement
extended into the PCRs. The server uses its nonce and the
AIC to verify the quote and uses the quote’s PCR values
to verify the measurement log. If the server trusts the con-
figuration represented by the measurement log, the server
completes the connection upgrade. The browser then gets
the usage-controlled file over the upgraded connection, and
stores it in the client’s UCFS.

The browser is part of the client’s TCB list and its in-
tegrity measurement is revealed to the server during the
client’s attestation. To prevent abuses, the client’s operat-
ing system ensures that only this browser can obtain quotes
and write received hardware-based usage policies. Any pro-
gram can prepare hardware-based usage policies, but pre-

Figure 3: Contextual menu option for setting a file’s
hardware-based usage policies

pared policies are not enforced locally.

3. USER INTERFACE DESIGN
This section describes our user interfaces for authoring

and viewing usage policies.

3.1 Plug-ins for uniformly viewing software-
based usage policies

To provide a consistent user experience, it is desirable that
user-interface programs display hardware- and software-based
usage policies in an integrated fashion. However, software-
based usage policies may be represented in various ways by
different applications. We enable consistent and integrated
display of usage policies by configuring the system with pol-
icy translator plug-ins for each supported file extension (e.g.,
.pdf). A policy translator translates a file’s software-based
usage policies to a common format. In our implementa-
tion, the common format is an extension of the Open Rigital
Rights Language (ODRL) [8]. The user-interface programs,
operating system, and hardware-based usage controls use
this format natively.

Policy translators are optional. They are used only by
user-interface programs for displaying software-based usage
controls. A file can have hardware-based usage policies and,
if received, our system will enforce them even if the file’s
extension does not have a configured policy translator.

3.2 Authoring hardware-based usage policies
We added to the operating system’s file manager a context-

sensitive command for setting a file’s hardware-based usage
policies. The user accesses the command by right-clicking
the file and selecting from a menu, as shown in Fig. 3.
We implemented this command in Nautilus, the file man-
ager that is part of the Gnome desktop environment used in
many Linux systems.

The command’s first dialog box is shown in Fig. 4. The
user enters the name of a program that is trusted to open the

Figure 4: Binding file to trusted application

file. The command searches for programs with that name
in the directories in the user’s path environment variable.
If more than one instance is found, the user clicks on the
desired instances. The command then transparently creates
a usage policy with the name and integrity measurements of
the program versions trusted to open the file.

The second dialog box is displayed in Fig. 5. The user
selects the starting and ending dates of the period during
which access to the file is allowed. The command transpar-
ently creates a usage policy with this period. The dialog
also displays the file’s software-based usage policies, if the
file has an extension for which a policy translator is config-
ured (e.g., .pdf). When the user clicks OK, the command
links the prepared usage policies to the file.

A file’s author or distributor does not need a modified op-
erating system or TPM. Even if the author or distributor
has them, the operating system enforces only received us-
age policies, and only the modified browser can write such
policies. Consequently, usage policies are enforced only at
clients. The distributor does need, however, a modified Web
server that verifies that clients are trustworthy (as attested
by a TPM) before sending usage-controlled files to them.

3.3 Overriding usage policies
System administrators can configure in each user’s com-

puter usage policies that override the user’s policies or de-
cisions when the user attempts to post or retrieve a usage-
controlled file. In our current implementation, those over-
riding policies are written using a conventional text editor,
directly in our ODRL extension. For example, a overriding
policy may specify that posted files must not allow printing
or copying, or that acceptable files must be accessible for at
least a year.

3.4 Posting usage-controlled files to Web site
To facilitate posting usage-controlled files to a Web site,

we added to the operating system’s file manager another
context-sensitive command. As shown in Fig. 6, the user

Figure 5: Specifying allowed period for accessing file

Figure 6: Contextual menu option for posting a file
to Web site

Figure 7: Dialog for confirming or canceling posting
of file (without overriding policies)

Figure 8: Confirmation of file posting

accesses the command by right-clicking the file.
If the system is configured without overriding policies for

posting files, the command simply displays the file’s usage
policies and asks the user to confirm or cancel the opera-
tion, as shown in Fig. 7. A configuration file specifies to
what subdirectory in the Web server’s directory the com-
mand should copy the posted file. If the user confirms, the
command displays the box shown in Fig. 8.

On the contrary, if there are overriding policies for post-
ing files, the command checks whether the file is compliant
to those policies and presents the results in the dialog box
shown in Fig. 9. If the file is noncompliant, the option for
confirming the operation is grayed out; the user can click on
the icons for more information, or cancel.

3.5 Retrieving usage-controlled files from Web
site

Before the client’s browser downloads a usage-controlled
file, the browser gets the file’s usage policies from the server.
If the system is configured without overriding policies for
accepting files, the browser simply displays the file’s usage
policies and asks the user to confirm or cancel the operation,
as shown in Fig. 10.

On the contrary, if there are overriding policies for accept-
ing files, the browser checks whether the file complies with
those policies. If the file is noncompliant, the browser dis-
plays the dialog shown in Fig. 11. The user can click on the
icons for more information or cancel.

The browser stores usage-controlled files in the UCFS,
whose key is managed by the TPM. There is a subdirectory
in this file system for each user, e.g., /controlled/user/pat/.
The browser does not allow a user to store a downloaded
usage-controlled file outside his or her subdirectory in the
UCFS.

Figure 9: Dialog for confirming or canceling posting
of file (with overriding policies)

Figure 10: Dialog for accepting or canceling file
download (without overriding policies)

Figure 11: Dialog denying file download (with over-
riding policies)

The client’s operating system ensures that any file with
received hardware-based usage policies can be opened only
by applications that the file’s author trusts, as specified in
those policies. Usually, trusted applications do not include
generic commands such as cp, lpr, or mv. Thus, operations
such as copying or printing usage-controlled files can be per-
formed only by specific trusted applications, which enforce
software-based usage policies.

4. USABILITY EVALUATION
We performed a user study to evaluate our system and

report the results in this section.

4.1 Experimental design
In our user study, each participant role-played a user in a

first scenario, and then role-played another user in a similar
second scenario. Both scenarios required the user to consider
seven documents available for download from the Web, make
and write a design decision based on them, and then post
the decision to a Web site. To avoid order-induced biases,
the first scenario was randomly selected between scenarios
F and T (described in the next section), and the remaining
scenario was performed second.

Considering that, before the experiment, participants were
familiar with Web browsing but unfamiliar with usage con-
trols, the first scenario was always performed without usage
controls, using unmodified software. There was one excep-
tion, however: the file manager had a contextual menu sim-
ilar to the one shown in Fig. 6 (without the dialog of Fig.
7), to facilitate posting the decision to the Web site. The
second scenario was performed with usage controls, using
our modified Web server and client operating system and
browser and user interfaces described in Sections 2 and 3.
In the second scenario, we asked the user to accept only
documents whose usage policies conform to specified poli-
cies, and to set certain usage policies in his or her decision.

In each scenario, four of the seven documents (set A) had
acceptable usage policies and useful information. The re-
maining three documents (set B) had unacceptable usage
policies and no useful information. We measured under each
condition (i.e., with or without usage controls) the number
of documents in set A downloaded, the number of documents
in set B downloaded, the number of decisions correctly made
and posted, and the task completion time. To evaluate the
statistical significance of differences between the two condi-
tions, we performed paired t-tests.

Ideally, usage controls would cause significant decrease in
the number of documents in set B downloaded, because they
have unacceptable usage policies. At the same time, usage
controls should cause insignificant difference in the number
of documents in set A downloaded, number of decisions cor-
rectly made and posted, and task completion time. The
overriding policies described in Section 3.3 can guarantee
that no documents in set B would be downloaded and no
decisions with incorrect usage policies would be posted, re-
gardless of the usability of the user interfaces. To avoid such
biases in favor of usage controls, the scenarios did not have
any overriding policies.

When a user performs a scenario first, one would expect
the user to download all of the scenario’s documents, because
usage policies are not visible to the user. Conversely, when
a user performs the same scenario second, one would expect
the user to reject documents in set B, because they have

Table 1: Participant characteristics
Participants 10
Male 3
Female 7
With Engineering / CS background 5
Ease of understanding user study tasks (SR) 3.8 / 5
Ease of completing user study tasks (SR) 3.6 / 5

unacceptable policies. If documents in set B contained useful
information, their consideration would tend to increase task
completion time and might change the decision when the
scenario is performed first. To avoid such biases in favor
of usage controls, documents in set B contained no useful
information.

4.2 Scenarios
In both scenarios, the participant role-plays an engineer

employed by a car manufacturer. In each scenario, the engi-
neer’s task is to consider alternatives offered by seven sup-
pliers and, according to specified criteria, select one of them
for an upcoming car model. A specified Web page contains
links to the suppliers’ offerings. Technical details of each
offering are provided in a PDF flyer. In scenario F, the
alternatives are engines that use alternative fuels, while in
scenario T, the alternatives are tires. The flyers of the third,
fourth, and seventh suppliers (set B) have unacceptable us-
age policies and simply say that technical information is still
unavailable. The flyers of the remaining suppliers (set A)
have acceptable usage policies and contain the technical in-
formation necessary for the design decision.

The engineer uses OpenOffice to write his or her decision
and export it to PDF. In the condition with usage controls,
the engineer uses the command described in Section 3.2 to
set usage policies. The engineer then uses the command
described in Section 3.4 to post the decision to the Web
site.

4.3 Participants
We recruited participants who were at least 19 years old,

proficient in English, and familiar with at least one Web
browser, PDF viewer, and word processor. We advertised
the user study by distributing flyers aroung the Univer-
sity of Pittsburgh’s campus and posting for volunteers in
Carnegie Mellon University’s Center for Behavioral Deci-
sion Research website, pittsburgh.craigslist.org, and pitts-
burgh.backpage.com.

Given that participants would be role-playing engineers,
recruitment advertisements sought to attract participants
with some education and work experience in Engineering or
Computer Science. However, only half of the participants
had such background. Table 1 summarizes participant char-
acteristics (where “SR” denotes self-reported). There were
10 participants, 7 of which were female. On average, partic-
ipants found the user study tasks moderately easy to under-
stand and complete.

4.4 Laboratory sessions
We scheduled individual laboratory sessions for each par-

ticipant. Each participant’s session lasted between 24 and
48 minutes. Participants received between $15 and $22 for
their time.

Table 2: Results of user study (paired t-test, n=10)
mean std. dev. eff. size p-value

documents with acceptable policies downloaded (set A)
Without usage controls 4.0 0.0
With usage controls 4.0 0.0
Difference 0.0 0.0 not signif.
documents with unacceptable policies downloaded (set B)
Without usage controls 3.0 0.0
With usage controls 0.1 0.316
Difference -2.9 0.316 9.2 < 0.001
decisions correctly posted
Without usage controls 1.0 0.0
With usage controls 0.9 0.316
Difference -0.1 0.316 not signif.
Task completion time (minutes)
Without usage controls 17.77 4.51
With usage controls 18.89 3.95
Difference 1.09 3.89 not signif.

Table 3: Participant perceptions of usage control
system

Would feel comfortable using system again 4.3 / 5
Would recommend system to a friend 3.5 / 5

During a session, we took notes and recorded the partic-
ipant’s computer screen, face, and voice. The recordings
helped us debug the scenarios and user interfaces before the
user study, and thereafter helped us confirm counts and task
completion times. We did not record participant names or
other personal information. We report only aggregate re-
sults.

4.5 Results
Table 2 show the main results of the user study. The noted

effect sizes are Cohen’s d; values of 0.2, 0.5, and 0.8 are
indicative of small, medium, and large effects, respectively
[9].

The results obtained were close to ideal. First, usage
controls had no effect in the number of documents down-
loaded in set A, which had acceptable policies. Second,
usage controls strongly reduced the number of documents
downloaded in set B, which had unacceptable policies. Only
one of ten participants downloaded such a document, but
did not open it. After downloading, the participant reread
the instructions, again clicked on the link for downloading
the document, read the respective usage policies, and can-
celed. Third, nine out of ten participants successfully posted
the correct decision with correct usage policies. One partic-
ipant wrote the correct decision and posted it successfully,
but gave the decision an incorrect usage policy. Fourth, task
completion time was slightly higher with usage controls, but
the difference was statistically insignificant.

At the end of each laboratory session, we surveyed user
perceptions about our usage control system. The results
are summarized in Table 3. Participants indicated that
they’d be comfortable using the system again and would
give friends a moderately positive recommendation.

5. RELATED WORK
Usage controls for applications such as those discussed in

this paper are also known as enterprise digital rights man-
agement (EDRM), while usage controls for digital mass me-
dia are better known as digital rights management (DRM).
Usability tends to be more of a concern in EDRM because
EDRM may require many users to author and accept usage
policies. On the contrary, in DRM, usage policies usually
are authored by few specialists and enforced without explicit
client acceptance.

Other major differences between DRM and EDRM in-
clude the respective legal frameworks and user acceptabil-
ity. DRM typically affects information flows that are subject
to copyright laws. What constitutes acceptable usage under
copyright law depends subtly on context. Reliably determin-
ing and judging the relevant context remains a challenge for
computers [10, 11]. Usage policies that DRM systems can
enforce are usually much less nuanced and more restrictive
than those of copyright law. Thus, many users resent DRM.
On the contrary, EDRM typically affects information flows
that are subject to NDAs and/or privacy laws and regula-
tions, such as HIPAA or GLBA. Such agreements, laws, and
regulations often stipulate strict usage policies and penalties
for noncompliance. Both distributors and recipients of such
information may welcome EDRM’s ability to reduce risks of
noncompliance [12].

Two previous projects have developed TPM support for
Linux: Enforcer [13] and tcgLinux [14]. Neither project tar-
geted usage controls, however. In Enforcer, a manifest can
list what applications can run in the system and open spec-
ified files. However, the manifest needs to be signed by the
system’s trusted administrator. Thus, a file distributor can-
not specify new usage policies that are enforced by a client
unless the file distributor is also the client’s administrator
or convinces the latter to sanction them. In tcgLinux, the
kernel extends into PCRs integrity measurements of all pro-
grams executed, in the order of execution. Thus, PCR val-
ues vary with execution order. Such variable PCR values
are unsuitable for TPM sealing. If a UCFS’s secret key is
sealed to particular PCR values, it may not be possible to
unseal the key reliably.

Lack of interoperability may hamper DRM and EDRM
adoption. Prominent efforts for enhancing DRM interoper-
ability include the MPEG-21 REL [15] and OMA DRM [16]
standard rights languages, and the NEMO [17] system for
orchestrating distributed services with heterogeneous media
and rights formats. Like NEMO, and unlike MPEG-21 and
OMA, our work supports interoperability using unmodified
applications. We also provide solutions for enforcing usage
policies securely on commercially available computers and
usable interfaces for EDRM, which had not been described
and evaluated in previous literature.

6. CONCLUSIONS
Usage controls enable the distributor of a file to limit

how recipients of that file may use it. Usage controls can
be negotiated and enforced automatically, quickly and inex-
pensively. Hence, they could be an atractive alternative or
adjunct to non-disclosure agreements. However, existing us-
age controls often are software-based and easy to break. We
designed and implemented operating system modifications
that allow hardware-based usage controls to be easily added
to existing software-based ones, hardening them. We also
designed and implemented Web server and browser modi-
fications for transmitting usage-controlled files securely. In
this paper, we described our system’s user interfaces and
evaluated the system in a user study. In the study, untrained
users role-played design engineers in two similar collabora-
tive scenarios with or without usage controls. The results
were very promising. Users found the interfaces easy to use
and had insignificant trouble in considering documents’ us-
age policies when deciding whether to accept them. They
also had little trouble in authoring documents with appropri-
ate usage policies. Usage controls had insignificant impact
on the completion times and accuracy of the assigned tasks.
These results suggest that the usage control approach de-
scribed in this paper can add security to collaborative work-
flows with minimal training and performance penalties.

Acknowledgements
This project was funded in part by a grant from the NSF
Center for e-Design [18].

7. REFERENCES
[1] OpenOffice, http://www.openoffice.org/

[2] Adobe. “Adobe Portable Document Format version
1.7”, Nov. 2006. http://www.adobe.com/devnet/pdf/

[3] D. Touretzky. “Gallery of Adobe Remedies”,
http://www.cs.cmu.edu/~dst/Adobe/Gallery/

[4] D. Kyle and J. Brustoloni. “UCLinux: A Linux
Security Module for Trusted-Computing-based Usage
Control Enforcement”, in Proc. 2nd Workshop on
Scalable Trusted Computing, ACM, Nov. 2007,
http://www.cs.pitt.edu/~jcb/papers/stc2007.pdf

[5] Trusted Computing Group. “Trusted Computing
Platform Alliance (TCPA): Main Specification version
1.1b”, Feb. 2002,
http://www.trustedcomputinggroup.org/

[6] Foolabs. “Xpdf: A PDF Viewer for X”,
http://www.foolabs.com/xpdf/home.html

[7] C. Wright, C. Cowan, S. Smalley, J. Morris and G.
Kroah-Hartman. “Linux Security Modules: General
Security Support for the Linux Kernel”, in Proc. 11th

USENIX Security Symp., Sept. 2002, http://www.
usenix.org/publications/library/proceedings/

sec02/full_papers/wright/wright.pdf

[8] R. Ianella. “Open Digital Rights Language version
1.1”, Sept. 2002, http://www.w3.org/TR/odrl/

[9] J. Cohen. “Statistical Power Analysis for the
Behavioral Sciences”, Lawrence Erlbaum, Hillsdale,
NJ, 1988.

[10] L. J. Camp, “First Principles of Copyright for DRM
Design,” in IEEE Internet Computing, May-June 2003,
pp. 59-65.

[11] J. Erickson and D. Mulligan. “The Technical and
Legal Dangers of Code-Based Fair Use Enforcement,”
in Proceedings of the IEEE, 92(6):985-996, June 2004.

[12] M. Donner. “Whose Data Are These, Anyway?,” in
IEEE Security & Privacy, May-June 2004, pp. 4-5.

[13] J. Marchesini, S. Smith, O. Wild, A. Barsamian and J.
Stabiner. “Open-Source Applications of TCPA
Hardware”, in Proc. Annual Computer Security
Applications Conf. (ACSAC), 2004,
http://www.acsac.org/2004/papers/81.pdf

[14] R. Sailer, X. Zhang, T. Jaeger and L. van Doorn.
“Design and Implementation of a TCG-based Integrity
Measurement Architecture”, in Proc. 13th USENIX
Security Symp., http://www.usenix.org/
publications/library/proceedings/sec04/tech/

full_papers/sailer/sailer.pdf

[15] X. Wang. “MPEG-21 Rights Expression Language:
Enabling Interoperable Digital Rights Language,” in
IEEE MultiMedia, Oct.-Dec. 2004, pp. 84-87.

[16] W. Buhse and J. van der Meer. “The Open Mobile
Alliance Digital Rights Management,” in IEEE Signal
Processing, Jan. 2007, pp. 140-143.

[17] R. Koenen, J. Lacy, M. Mackay and S. Mitchell. “The
Long March to Interoperable Digital Rights
Management,” in Proceedings of the IEEE,
92(6):883-897, June 2004.

[18] NSF Center for e-Design,
http://www.e-designcenter.info/default.aspx

