
Enforcing the Principle of Least Authority on Desktop
Applications Using Implied Authority

Brett Cannon
University of British Columbia

201-2366 Main Mall
Vancouver BC V6K 4A1

drifty@cs.ubc.ca

Eric Wohlstadter
University of British Columbia

wohlstad@cs.ubc.ca

1. INTRODUCTION
Desktop client applications are a popular form of software

which interact heavily with both local and remote resources,
such as local disk and network resources. This is both a ben-
efit in terms of the rich features desktop clients (DCs) can
provide, but also a potential security risk. Resources must
be handled by the application appropriately to ensure con-
fidentiality and integrity of the user’s sensitive information.

A potential way to mitigate resource misuse would be
to follow the Principle of Least Authority (POLA):“Every
program ... should operate using the least set of privileges
necessary to complete the job” [4]. This could be done by
sandboxing a DC using an application–specific access control
policy; then the application could only use those resources
necessary for its operation. In the case of a security issue,
any negative effects would be limited.

In previous work, Yee [6] introduced the Principle of Ex-
plicit Authorization to describe situations where input to an
application from a trusted user can be used to guide access
control decisions [6]. However, previous work takes advan-
tage of a user’s input for only one specific case. Karp et al.
[2, 5] have implemented a custom implementation of a file
chooser GUI widget to monitor the files chosen by the user
and give the application access to only those files (which
was subsequently the focus of a usability study published at
SOUPS 2006 [1]). However, this support does not extend
to other GUI or any non-GUI elements of the application,
all of which could potentially be harnessed to guide access
control decisions.

We use the term implied authority 1 as the authority granted
to some subject (the agent) based on the demands made of
it from some other trusted subject (the principal). To meet
the demands of the principal, the agent will necessarily re-
quire certain authority (i.e. privileges). Our research looks
into ways of detecting the privileges necessary for a DC to
fulfill the demands placed on it.

We have identified two specific sources of demands placed
on the application: the user and the reading of data driven
from user’s actions. This setup is shown at a high-level in
Figure 1. The first, as identified by Yee [6], makes use of
a user’s intentions as expressed through their actions with
the GUI. Our approach considers two specific kinds of GUI
interactions: text input from the keyboard and item selec-

1In contract law, implied authority is “The authority to per-
form acts that are customary, necessary, and understood
by an agent as authorized in performing acts for which the
principal has given express (explicit) authority” -Merriam-
Webster’s Dictionary of Law

Files

Network

GUI

 Structured Data

Desktop Application
Code

Implied Authority

End User

Figure 1: Basic structure for using implied author-
ity. Interactions with the application carry implied
authority, through both the GUI and structured
data, granting and revoking authority to access var-
ious resources during execution.

tion through the mouse. A developer using our approach
attaches security semantics to GUI widgets by specifying a
mapping between Java class fields that refer to GUI widgets
and some policy. The second case is identifying resources re-
ferred to in (semi-) structured data such as XML files. Us-
ing our approach a developer attaches security semantics to
XML data by providing a mapping between XML elements
and a policy using a small XPath-like language.

These approaches allow for the end user to be a direct,
but unconsciously-aware participant in the delegation of au-
thority to the application. By hiding the security decisions
behind GUI and data input events, the usability for an end
user of enforcing POLA on an application is greatly simpli-
fied.

2. POLICY FOR POLA IN CLIENT APPLI-
CATIONS

The high-level security model in our approach consists of:

• DC, a desktop client application

• user, the end user of the DC

• developer, a trusted developer of the DC

• hosts = {h1, h2, ..., h∞}, a set of network hosts

• files = {f1, f2, ..., f∞}, a set of local files

We wish to protect the user from unexpected disclosure
or corruption of sensitive data which is stored in files or in
the run-time state of the DC. This is done by minimizing
the access of the DC to hosts ∪ files (i.e. the resources).

We assume that the user trusts the primary developer of
the DC to act in good faith. However, the DC is developed
out of a large number of components, any of which could
be faulty or infected by malware. So there is the potential
for some problem to occur in the DC, outside of the trusted
developer’s control.

Our enforcement mechanism builds from a traditional ac-
cess control list (ACL). The security mechanism maintains
an ACL for each application execution instance (i.e. pro-
cess), which is the only subject for which the ACL applies.
Each entry in the list contains three pieces of information,
the first two of which should be familiar:

• resource, a canonical string representation of some el-
ement from hosts∪ files. These resources are the ob-
jects of the ACL.

• permission, a permission modifier such as read, write,
connect.

• lifetime, an indication of when the entry is valid:
transient or persistent (details described below).

With the application initially configured for complete user
mediated resource access, certain application inputs are mon-
itored and used to relax user mediation, by automatically
granting some authority at run-time. We model this struc-
ture as follows:

• format = {s1, s2, ..., sn}, a set of XML data formats
used by the DC (e.g. HTML, RDF, Atom, etc.). We
assume each format has some well-defined schema (ei-
ther formally or informally) so that data elements in
an instance of that format can easily be queried.

• gui = {g1, g2, ..., gn}, a set of class fields which may
reference a widget that receives information from the
user.

In our proposed approach, it is the responsibility of the
developer to understand the details of the application as
they relate to the format and the gui. They can use that
understanding to write a policy to control the authority of
the application.

Writing a DC POLA policy consists of creating rules which
identify elements from format ∪ gui which imply that de-
mands are being made of DC. These rules act as generators
for ACL entries. In our proposed approach, developers can
generate entries using two kinds of policy rules:

• xmlRule, where an element of xmlRule is a query
given in a small, custom, XML query language.

• widgetRule, where an element of widgetRule is a pair
consisting of an application class name and some field
(i.e. property/attribute) of that class which is meant
to reference a widget object.

Essentially, a policy is just a map from
xmlRule ∪ widgetRule to permission × lifetime.
Each rule specifies that, if data elements matched by a
query are parsed, or if specified widgets have data input by
the user, then a new entry should generated and added to
the ACL.

Each entry in the ACL includes a property indicating
when the permission represented in the entry is valid. This
lifetime of the entry indicates whether: the entry should ex-
ist only for the life of a specific thread context (transient)

or the entry should be saved across application executions
(persistent). The determination of an entry lifetime is
made by the developer, based on their knowledge of the ap-
plication’s semantics.

In some cases, users will refer to resources in the GUI
using a semantic representation of a resource (e.g. a title
or description) rather than the lower-level URL or file path.
To make the connection between the semantic representation
of a resource and the resource’s identity, the developer can
create an alias. To set up an alias, a developer provides two
widgetRules or xmlRules: one which matches the alias text
and one which matches the resource identifier. This ensures
that the two rules can be matched simultaneously so that
an association between resource identifier and alias can be
made automatically.

3. CASE-STUDY
We are applying our approach to restrict the authority of

an existing open-source application, RSSOwl 1.2.4; a roughly
46,000 LoC Really Simple Syndication (RSS) reader written
in Java and SWT [3]. RSSOwl makes use of nine third-
party components, totaling 2201K worth of jar files. In the
table below, we list the number of rules for implied authority
found in RSSOwl through GUI interactions and data han-
dling. We hope to determine whether or not the enforcement
of POLA can be achieved using only the high-level code and
data matching rules offered through our approach.

Rule type Persistent Transient Alias

widgetRule 3 10 3
xmlRule 2 1 5

Table 1: Numbers of implied authority policy rules
written for RSSOwl. Rows represent whether rules
were triggered by GUI actions or application data
input. Columns represent whether rules were used
to generate ACL entries for a particular lifetime or
used to generate an alias.

4. REFERENCES
[1] A. J. DeWitt and J. Kuljis. Aligning usability and

security: a usability study of polaris. In SOUPS ’06:
Proceedings of the second symposium on Usable privacy
and security, 2006.

[2] A. H. Karp. POLA Today Keeps the Virus at Bay.
Technical Report HPL-2003-191, HP Laboratories Palo
Alto, 2003.

[3] B. Pasero. RSSOwl. http://www.rssowl.org/.

[4] J. H. Saltzer and M. D. Schroeder. The Protection of
Information in Computer Systems. In Communications
of the ACM, volume 17, 7, 1974.

[5] M. Stiegler, A. H. Karp, K.-P. Yee, and M. S. Miller.
Polaris: Virus Safe Computing for Windows XP.
Technical Report HP:-2004-221, HP Laboratories Palo
Alto, 2004.

[6] K. Yee. User Interaction Design for Secure Systems. In
International Conference on Information and Computer
Security, 2002.

