
RUST: The Reusable Security Toolkit∗

Chaitanya Atreya
∗

Adobe Systems
atreya@adobe.com

Adam Aviv
†

University of Pennsylvania
aviv@cis.upenn.edu

Maritza Johnson
Columbia University

maritzaj@cs.columbia.edu
Mariana Raykova
Columbia University

mariana@cs.columbia.edu

Steven M. Bellovin
Columbia University

smb@cs.columbia.edu

Gail Kaiser
Columbia University

kaiser@cs.columbia.edu

ABSTRACT
We describe the design of a reusable toolkit for testing anti-
phishing technologies. It is based on web bugs and a set of
small, simple tools. We show that its existence would have
simplified the design of other studies in the field.

1. INTRODUCTION
Testing an anti-phishing technology is time-consuming.

One must build real and spoofed websites that employ the
technology, carefully devise a test scenario, recruit subjects,
run sessions, administer questionnaires, evaluate behavior,
analyze collected data, etc. Certain aspects of this process
are irreducible. To test a technology, for example, it has
to be running somewhere. Other aspects, though, are more
amenable to automation. In particular, a user’s actual click-
through behavior can be captured by various mechanisms in-
cluding modifying the browser or mailer, modifying the web
server or scripts, or log file analysis. Still, these can be diffi-
cult to prepare as well, if any new anti-phishing technology
requires custom software to do the monitoring or analysis.

Instead, we have built a toolkit to simplify the task of
preparing a testing environment. Very few changes are needed
to the web sites under test. More or less any web site and/or
authentication technology can be evaluated for security with
little effort. In addition the toolkit provides a test environ-
ment that is more reliably uniform. This is an important
scientific benefit when gathering empirical evidence: the re-
sults of two different studies can be compared much more
easily when the testing conditions are the same.

We have used our toolkit for small-scale studies [3] of Mi-
crosoft’s CardSpace [6] and Verisign’s Secure Letterhead [2].
The prototype code we developed considerably simplifies in-
strumenting web sites and running tests.

∗This work supported by a grant by the FSTC.
∗Work done while at Columbia University
†Work done while at Columbia University

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.
Symposium on Usable Privacy and Security (SOUPS) 2008, July 23–25,
2008, Pittsburgh, PA USA
.

2. TOOLKIT STRUCTURE
There are several components to our toolkit. ones are

TinyHTTPProxy Acts as an HTTP proxy and URL rewriter

ProxyBridge Terminate SSL/TLS connections

Mailer.sh Mail generator

Web Bugs Instrument web pages

Logger Generates standardized log files

2.1 TinyHTTPProxy
Test subjects use standard desktop computers with a browser

that supports Javascript and HTTP proxies. The browsers
are configured to accept Javascript and to send all web page
requests to our proxy.The also have mailers. TinyHTTP-
Proxy (described below) receives user web page request. It
rewrites them and forwards them to ProxyBridge. Proxy-
Bridge, in turn, logs significant details and passes the re-
quests to the actual web server.

TinyHTTPProxy terminates connections from the browser.1

In our setup, it provides us with our own Internet names-
pace and it lets us rewrite portions of the URL to send re-
quests for different sites to different ports. The namespace
issue is the most crucial for us. We want sample URLs to
say things like www.citibank.com or www.evilhackerdudez.
org, without requiring the involvement of the real web sites.
TinyHTTPProxy uses a simple configuration file to describe
these rewrites.

A specialized protocol is used for communications between
TinyHTTPProxy and ProxyBridge. The primary purpose of
this protocol is to communicate the client’s IP address; we
use that to distinguish between different test subjects.

2.2 ProxyBridge
ProxyBridge serves three main purposes: it terminates

SSL/TLS connections, it rewrites the directory name por-
tion of URLs, and it generates log messages for references
to web bugs.

In normal Web environments, SSL or TLS connections
from browsers are handled by web servers. This is problem-
atic when trying to serve multiple web sites from a single
server. We need to terminate the SSL or TLS connection
before we pass the request to the web server. We accomplish
the separation by having ProxyBridges running on multiple

1See http://www.okisoft.co.jp/esc/python/proxy/.



port numbers; the redirection by TinyHTTPProxy accom-
plishes that nicely.

The second function of ProxyBridge is rewriting the path-
name portion of URLs. A proper simulation of a financial
institution’s web site demands that the proper pathnames
appear in the URL bar; however, these may not match the
pathnames in the simulated site.

ProxyBridge also generates log file entries for web bugs
and needs to know the subject’s web browser’s IP address to
permit proper identification of each test. Only TinyHTTP-
Proxy knows this so ProxyBridge forks and creates a new
instance of itself for each client IP address, with a separate
port number.

2.3 Mail Generator
Our mail generator is rather simple, it builds standard

MIME-formatted messages. In addition, two other simple
scripts are used. One script sends emails at predetermined
time intervals and the remaining script speaks SMTP to
submit the mail.

2.4 Web Bugs
When collecting data on how test subjects respond to

phishing emails we are interested in web pages related to
the login process, knowing the order of the web pages vis-
ited reveals whether or not the user fell for the attempted
phishing attack. Additionally, we are also interested in how
long they are on a specific page, this information can be
used when analyzing data for the stages of interaction that
need to be reworked in future iterations. We thus instru-
ment pages of interest by inserting a “web bug”. A web bug
is reference to a small image, typically a 1 pixel by 1 pixel
transparent GIF image. We use Javascript to generate dy-
namic references to the web bug. The “test” field indicates
which task the web page is associated with in the session, in
cases where the same site is used in evaluating a technology
in the same session.

2.5 Logging
The logger is a multi-threaded server that receives anno-

tated URL requests from the ProxyBridge. It correlates re-
quests for particular web bugs to produce simple page dwell
times for each subject. That is, it converts a sequence of
requests for a given page’s bug to a simple record stating
how long the subject was on a particular page.

Each request generated by the web bug on a web page
produces an entry. The first line is the GET request for the
gif web bug. Included in the request is: a numeric value to
indicate the amount of time spent on the page so far in the
time variable; the IP address string which can be used after
the study to identify concurrent test subjects based on which
machine they completed their tasks on; a value named test
that represents which task the web bug is associated with,
this will be useful when the same web page is used for a
number of tasks.

3. OTHER APPROACHES
Many usability evaluations have been conducted that re-

quire simulating aspects of phishing attacks in a controlled
lab environment. In most cases components of RUST would
have been useful had they been available at the time. In
Gathering Evidence [5], users were presented with a set of
websites and asked to label each as real or fake. The primary

goal was to determine what information users employed to
determine a web site’s identity. The relevant components of
RUST in this case would have been the web proxy service
and the logger.

Dhamija et al. [1] conducted a similar study that presented
participants with a set of web pages and asked which were
fake. The web proxy component of RUST could have been
used for serving the spoofed pages and the real pages could
have been accessed normally by not including a translation
to the configuration file for that domain. Also, it would have
been interesting if the study had collected data on how long
each user spent on a web page. Because users did not enter
credentials on any web site, it wouldn’t be relevant to collect
that data, but it would be interesting to know how long it
took a participant to reach their decision.

In 2006 SOUPS made toolkits available online for each of
the papers in the proceedings that presented results from a
user study [4]. The available material is not reusable com-
ponents but rather more detailed descriptions of what they
implemented and briefly discuss in the papers.

4. CONCLUSIONS
We have described the design and design philosophy of our

security toolkit. We assert that the toolkit is fairly simple to
configure and our design has bought us a great deal of flexi-
bility. We can support any web browser and any web server.
We can simulate any site, using any standard browser and
any web server. All of the necessary components can run
on a single machine, without any requirement for special
network configuration. Rather than build large, complex,
monolithic applications, we built a set of small, simple tools
that were well-adapted to their purpose.

5. REFERENCES
[1] R. Dhamija, J. D. Tygar, and M. Hearst. Why phishing

works. In CHI ’06: Proceedings of the SIGCHI
conference on Human Factors in computing systems,
pages 581–590, New York, NY, USA, 2006. ACM Press.

[2] P. Hallam-Baker. Secure internet letterhead. Security
for human ends. In W3C Workshop on Transparency
and Usability of Web Authentication, 2006.

[3] M. L. Johnson, C. Atreya, A. Aviv, M. Raykova, S. M.
Bellovin, and G. E. Kaiser. Modifying evaluation
frameworks for user studies with deceit and attack,
2008. In submission.

[4] SOUPS. Security user studies workshop: User study
toolkits. http://cups.cs.cmu.edu/soups/2006/
workshop-kits/kits.html, 2006.

[5] T. Whalen and K. M. Inkpen. Gathering evidence: Use
of visual security cues in web browsers. In GI ’05:
Proceedings of the 2005 conference on Graphics
interface, pages 137–144, School of Computer Science,
University of Waterloo, Waterloo, Ontario, Canada,
2005. Canadian Human-Computer Communications
Society.

[6] Windows. Cardspace. http://msdn2.microsoft.com/
en-us/netframework/aa663320.aspx.


