Bitfrost: the One Laptop per Child Security Model

Ivan Krsti¢
One Laptop per Child
Cambridge, MA
krstic@solarsail.hcs.harvard.edu

ABSTRACT

We present an integrated security model for a low-cost lap-
top that will be widely deployed throughout the developing
world. Implemented on top of Linux operating system, the
model is designed to restrict the laptop’s software without
restricting the laptop’s user.

Categories and Subject Descriptors

D.4.6.c [Security and Privacy Protection]: Cryptographic
Controls; H.5.2.e [HCI User Interfaces]: Evaluation/methodology

General Terms
Usability, Security

Keywords
Bitfrost, Linux

1. INTRODUCTION

Within the next year more than five million low-cost lap-
tops will be distributed to children in the developing world
who have never before had direct experience with informa-
tion technology. This “One Laptop per Child” project seeks
to use the power of information technology to revolutionize
education and learning within the developing world.

The laptops will be sold to countries and educational au-
thorities (hereafter “customers”), not to individuals, and
shipped from production facilities at Quanta Computer; fur-
ther shipping and delivery is the responsibility of the cus-
tomer. Current plans are for the customers to ship the lap-
tops to schools, where they will be distributed to children.

Each of these children’s “XO” laptops will run a greatly
slimmed-down version of the Linux operating system and
will participate in a wireless mesh network that will connect
them to the Internet via gateways located in schools (Fig-
ure 2). The laptops will be equipped with web browsers,
microphones and cameras so that the students can learn of

This work is in the public domain in the United States of America because it
is partially a work of an employee of the United States Federal Government
under the terms of 17 U.S.C. §105. As such, it is not subject to copyright.
Where it is not legally possible to consider this work as released into the
public domain, any entity is granted the right to use this work for any pur-
pose, without any conditions, unless such conditions are required by law.
SOUPS 2007 Pittsburgh, PA

Simson L. Garfinkel
Naval Postgraduate School
Monterey, CA
simsong@acm.org

BPrOAGES N

Figure 1: The XO-1 Laptop

the world outside their communities and communicate with
other children around the world.

Attempting such a project with existing security mech-
anisms such as anti-virus software and personal firewalls
would likely be disastrous: soon after deployment, attackers
would inevitably introduce malicious software into the lap-
top communities. This software might recruit the million-
plus laptops to join “botnets.” Other attackers might try
to disable the laptops out of spite, for sport, as the basis
of an extortion scheme, or because they disagree with the
project’s stated goal of mass education.

Many computer devices that are seen or marketed as “ap-
pliances” try to dodge the issue of untrusted or malicious
code by only permitting execution of code that is crypto-
graphically signed by the vendor. In practice, this means the
user is limited to executing a very restricted set of vendor-
provided programs, and cannot develop her own software or
use software from third party developers. While this ap-
proach certainly limits possible attack vectors, it is not a
silver bullet, because even vendor-provided binaries can be
exploited—and frequently are.

A more serious problem with the “lockdown” approach is
that it would limit what children could do with the laptops
that we hope to provide. The OLPC project is based on
constructivist learning theories [16]. We believe that by en-
couraging children to be masters of their computers, they

will eventually become masters of their education and de-
velop in a manner that is more open, enthusiastic and cre-
ative than they would with a machine that is locked and not
“hackable.”

As part of our educational mission, we’re making it very
easy for children to see the code of the programs they’re
running—we even provide a “View Source” key on the key-
board for this purpose—and are making it similarly easy for
children to write their own code in Python, our program-
ming language of choice. Given our further emphasis on
collaboration as a feature integrated directly into the op-
erating system, the scenario where a child develops some
software and wishes to share it with her friends becomes a
natural one, and one that needs to be well-supported.

To this end, we have designed and are implementing Bit-
frost, a security platform for the children’s laptop that bor-
rows from many recent developments in the field of usable
security (HCI-SEC). Freed from the requirement to support
legacy software, we believe that we have created a system
that may allow children to learn and experiment with ad-
vanced technology without falling prey to those who would
harm them or their machines.

1.1 Contribution

This paper is the first to present the security model devel-
oped for laptops that will be deployed by the One Laptop Per
Child project. We also show how the model is implemented
with a combination of hardware and software innovations.

As a project that bases most of its software on Linux and
other open source offerings, OLPC is yet another project
standing on the shoulders of giants. The majority of the
security mechanisms and techniques described in this docu-
ment are no different: most, if not all, have been previously
introduced elsewhere. Our contribution is bringing them all
together with the unifying vision of creating a laptop with
security that can be used by a 5-year-old.

1.2 Outline

This paper is structured as follows: Section 2 gives back-
ground information about the OLPC hardware and software.
Section 3 lays out our threat model, also outlining areas that
are beyond the intended scope for Bitfrost. Section 4 ex-
plains our security design goals and principles. Sections 5
explains the physical security portions of Bitfrost: delivery
chain security via activation, and anti-theft protection. Sec-
tion 6 covers how Bitfrost defines and manages user iden-
tity, and section 7 details the various Bitfrost protections
that apply during normal use of the XO laptop. Section
8 enumerates several security mechanisms missing from the
laptops. Section 9 concludes.

2. THE XO ENVIRONMENT

Many of today’s production operating systems have lofty
goals for usable security but fall short, we believe, because of
specific implementation mistakes. Frequently these mistakes
are the result of established practices or procedures. After
all, every laptop manufactured today must be able to run
legacy applications such as Microsoft Word, Firefox, and
Emacs.

The XO laptop faces no such restrictions: instead of being
designed to allow current computer users to run their exist-
ing programs, the XO is built to give millions of children
in the developing world their first taste of information tech-

nology. Our laptop is thus designed from the ground up for
usability and security, low production cost, durability, low
power consumption. We accept that any application may
need to be modified to run in this environment, although
we have worked to make sure that the modifications will be
as minimal as necessary. It should also be noted that these
modifications are primarily required from GUI applications
that deal with the user directly; most software libraries need
no modification at all, allowing a vast amount of existing
Linux libraries and language bindings to be used normally.

2.1 Hardware

The laptop is based on an AMD Geode LX-700 processor
running at 433 MHz. It has a 7.5-inch screen that can op-
erate in either a medium resolution color or high resolution
black and white mode, a wireless mesh network, camera that
supports video, a microphone, and three USB ports. There
is 256 MB of RAM, a 1MB Serial Peripheral Interface (SPI)
flash BIOS, and 1GB of high-speed NAND flash storage that
holds the laptop’s operating system, applications, and user
data [12]. Additional storage can be added through the use
of external USB devices and the built-in SD card slot.

2.2 Software and Boot Sequence

The laptop’s software is a slimmed-down version of Red
Hat’s Fedora Core Linux distribution. Significant effort has
gone to finding and eliminating any program that is unnec-
essary to the laptop’s operation or redundant with other
software. The laptop runs the X Window System with the
GTK?2 graphics toolkit. Window management is provided
by Sugar [13], a new user interface approach based on ac-
tivities, each occurring in their own screen, rather than the
traditional interface of overlapping windows, icons, and pull-
down menus.

When the laptop is powered up or rebooted, its ENE
KB3700 embedded microcontroller reads its firmware out
of the laptop’s SPI flash. The microcontroller initializes the
hardware, then starts the AMD Geode executing the lap-
top’s Open Firmware bootloader [14]. Written largely in
Forth, the bootloader can access the mesh network and the
laptop’s USB ports, navigate the laptop’s flash file system,
load and execute the Linux kernel, and reflash both the lap-
top’s BIOS and operating system. Under normal circum-
stances the firmware will load and execute the Linux kernel.

3. SCOPE AND THREAT MODEL

One Laptop per Child is strictly an educational project,
using laptops as a means to an end. As a result, in defining
the scope of our security platform, we shy away from exotic
threats or impractical notions of security. We focus instead
on a pragmatic, simple-to-state goal of delivering a machine
to children that operates in a predictable way that’s consis-
tent with their educational needs, even in the presence of
malicious software or attackers.

The threat model for OLPC laptops thus recognizes five
core threats. In no particular order, they are: software at-
tacks on the laptop hardware, attacks on operating system
integrity, user data loss, attacks on user control of the laptop
(and laptop ownership), and attacks on user privacy. Bit-
frost aims to mitigate those five classes of threats and no
others; we detail these threats below, and briefly mention
those explicitly not included in our definition of security.

OLPC public keys
provided to factory

Customer public keys
provided to factory

OLPC
Software

OLPC Keys - -
Activation lease renewals

provided to laptops
via school network

Customer
Server

Anti-theft server
Customer Keys

Child Keys

Factory
'
N S
I/4; _ s Laptop
/ Disabled shippments

g | o Llwon]

School

S
Server

CNOOI

network

Child Keys

Storage
Activation Leases
Software Updates
Laptop Backups

First-time activation leases provided to school by courier

Figure 2: The elements of the One Laptop per Child system discussed in this paper include software provided
by OLPC, an anti-theft server run by the laptop customer, the laptop manufacturing plant, the school’s
server, an Internet connection between the school and the anti-theft system, laptops, and a wireless mesh
network that gives the laptops intermittent connectivity to the school and standalone connectivity without

user configuration.

3.1 Software attacks on laptop hardware

Due to the unique hardware of the OLPC laptops, mali-
cious software aiming to render a laptop inoperable has two
targets at its disposal: the laptop’s SPI flash, which con-
tains the BIOS and firmware, and the NAND flash chip,
which acts as primary storage in the machine. Overwriting
the BIOS or firmware with malicious code or bogus data can
either put a machine under unconditional control of a mali-
cious party or prevent it from booting entirely. The NAND
flash has a limited number of write/erase cycles before it
ceases to function and requires replacement, meaning a piece
of malicious code that wears down the chip can cause the
laptop to be unusable until trained hardware intervention—
in this case, part replacement—is performed.

3.2 Attacks on operating system integrity

Malicious software damaging or deleting parts of the lap-
top’s operating system would, in most cases, be not much
more than an annoyance requiring the machine to be re-
imaged to run. But because we subscribe to constructivist
learning theories, we want to strongly encourage children to
progress as users, becoming increasingly sophisticated and
taking greater liberties with the machine. The possibility
of a laptop frequently being rendered inoperable and re-
quiring re-imaging as a result of either hostile software or
the child’s own experimentation would serve as a strong de-
terrent to this progression. At the same time, preventing
operating system integrity from being subverted under any
circumstances runs counter to the idea of giving children
full control of their computers and unconstrained freedom
to learn and modify what’s there.

3.3 User data loss

In the process of encouraging children to understand their

computers and master them, it is insufficient to merely en-
sure that the child can return their machine to a known-good
state with regard to operating system integrity in the event
of inadvertently causing damage to the OS. Restoring the
laptop to a “known-good state” must restore both the OS
and the user’s documents, pictures, video clips and music,
or else children will be strongly discouraged from experi-
menting with their machines. Similarly, despite the rugged
nature of OLPC laptops, it would be upsetting to children if
all their documents vanished in case their laptop was dam-
aged or stolen.

3.4 Attacks on user control and ownership

Given the target number of OLPC laptops to be pro-
duced in coming years, it could be a profitable endeavor to
write malicious software that avoids interfering with a lap-
top’s user or his documents in any way, instead choosing to
covertly wrest away control of the laptop by turning it into
a spam relay or node in a botnet. In the physical domain,
the conspicuous, neon green laptops are easy to spot; given
their intended audience, they are presumably just as easy to
steal.

3.5 Attacks on user privacy

The presence of a camera and microphone on a laptop in-
tended for very young users is troubling from a privacy point
of view, despite their great utility. Malicious software could
surreptitiously monitor the children, sending photographs,
videos or sound clips to third parties entirely without the
child’s knowledge or consent. Such software could also vio-
late expectations of the privacy of personal documents and
information, which has been shown to have a detrimental
impact on the learning process [4].

4. DESIGN GOALS AND PRINCIPLES

After designing our threat model, we created a list of five
design goals for OLPC systems security that directly corre-
spond to the five classes of threats we wish to defend against.
They are:

Prevent hardware damage The laptop needs to protect
itself so that software cannot damage the underlying
hardware.

Provide software recoverability It needs to be possible
to easily return the laptop to a known-good operating
system state using nothing but the laptop itself.

Prevent permanent data loss The information on the lap-
top must be protected so that it can be recovered in
the event that the laptop is lost, stolen or destroyed
or the data is deleted or becomes inaccessible for any
other reason.

Keep the laptop under control of its owner The lap-
top should make it difficult for control to be usurped by
a third party, both in the software sense by e.g. mak-
ing the laptop a part of a botnet, and in the physical
sense by stealing the laptop.

Protect the user’s privacy The laptop needs to be able
to prevent information created by the user from being
released without the user’s explicit permission. Like-
wise, the laptop’s camera or microphone should not be
able to covertly monitor the user’s actions.

4.1 Implementation Requirements

If there is a set of security principles that inform the design
of modern computing systems, it is probably the “anti” prin-
ciple: if something happens to the computer that the user
doesn’t like, it’s the user’s responsibility to obtain, install,
configure and use an appropriate piece of anti-software (e.g.,
anti-virus software, anti-spyware agents, or anti-phishing
browsers and tool bars). This reactive approach to secu-
rity cannot work for OLPC, since we cannot be assured that
we will be able to update the deployed laptops with any
great speed: were a hostile worm loose on the laptop’s mesh
network, it is likely that the mesh would deliver the worm
to the vulnerable laptops faster than it would deliver the
antidote.

For this reason, we developed the OLPC security model
while being acutely aware of the kind of experience we wanted
the laptop’s users to have. This led us past merely defining
the security design goals, and towards also defining a set of
implementation requirements that govern the user experi-
ence with security on the laptops. Namely:

No user passwords With users as young as 5 years old,
the security of the laptop cannot depend on the user’s
ability to remember a password. Users cannot be ex-
pected to choose passwords when they first receive
computers. As a result, we necessarily treat physi-
cal access to the laptop as a proxy for authority to
control the laptop. (We considered and rejected the
idea of using a graphical authentication system, such
as having the child chose a picture to authenticate.)

No reading required Security cannot depend upon the
user’s ability to read a message from the computer

and act in an informed and sensible manner. While
disabling a particular security mechanism may require
reading, a machine must be secure out of the factory
if given to a user who cannot yet read.

No lockdown Though in their default settings, the lap-
top’s security systems may impose various prohibitions
on the user’s actions, there must exist a way for these
security systems to be disabled. When that is the case,
the machine will grant the user complete control.

Out-of-the-box security The laptop should be both us-
able and secure out-of-the-box. Security updates should
be unnecessary for all but the most critical of vulner-
abilities.

Unobtrusive security Whenever possible, the security on
the machines must be behind the scenes, making its
presence known only through subtle visual or audio
cues, and never getting in the user’s way. Whenever
in conflict with slight user convenience, strong unob-
trusive security is to take precedence, though utmost
care must be taken to ensure such allowances do not
seriously or conspicuously reduce the usability of the
machines.

As an example, if a program is found attempting to vi-
olate a security setting, the user will not be prompted
to permit the action: the action will simply be denied.
If the user wishes to grant permission for such an ac-
tion, she can do so through a special interface we call
the Security Center.

4.2 Identification Mechanism

We have seen many security systems fail or become unus-
able because of their inability to address the identification
and authentication of manufacturers, publishers, and users.
This is a fundamentally hard problem—one that we cannot
hope to solve. Instead, we have taken a very conservative
approach to identification management and policy:

Direct certification of content Instead of requiring that
the laptop participate in a traditional Public Key In-
frastructure, we have decided to provide each laptop
with a set of public cryptographic keys that will be
used to certify content — such as software or e-books
— created by either OLPC or the customer. The sole
purpose of these keys will be to verify the integrity of
bundled software and content. Note that the purpose
of certification is not to restrict execution or viewing to
only certified content, but to afford such content with
additional privileges or capabilities when appropriate.

No unprotected authentication To prevent a wide vari-
ety of attacks, we have decided that authentication of
laptops or users will never depend upon identifiers that
are sent in cleartext over the network. In general, we
will refrain from using passwords in the protocols that
we develop, and Ethernet MAC addresses will never
be used for authentication.

No end-user validation Because of the logistical difficulty,
the laptop will not provide services for third-party val-
idation of user identity. Instead, each laptop will asso-
ciate the public keys that it sees with specific identities
and report to users when these associations change, an
approach called Key Continuity Management [9].

S. ACTIVATION AND ANTI-THEFT

Because of the production volumes, laptop shipments are
an attractive target for theft. What’s more, several countries
participating in project have high levels of theft and corrup-
tion. Not surprisingly, OLPC has received requests to design
a system that would act as a strong deterrent against theft.

5.1 Appeal to Children, not Adults

The first element of the anti-theft strategy is a number of
engineering choices that were designed to make the laptop
unsuitable for running conventional application programs
and operating systems and unappealing to adults. For exam-
ple, the laptop’s keyboard is well-suited to children’s hands
and eyes, but not to larger ones.

5.2 Minimize Resale Value

The anti-theft system’s second element is to design the
machine to have a minimal resale value. With the excep-
tion of the custom display that cannot be used with stan-
dard computers, all of the XO’s valuable parts are soldered
onto the motherboard and thus not easily removable. Even
though it has an x86-based processor, the XO lacks the stor-
age and other necessary hardware to run either the DOS or
Windows operating systems. The XO’s 256 MB of RAM can-
not be expanded.

5.3 Mandatory Activation

The third element of the anti-theft system is an activation
system that renders each laptop unusable from the point
of manufacture until it arrives at the intended destination
school, and automatically deactivates the laptop if it is re-
ported stolen. We call this system P_THEFT.

During production, in each laptop’s SPI flash chip is writ-
ten a random serial number (SN) and a randomly-generated
identifier (UUID), and a customer-specific public key Kj.
The SN is printed on the laptop’s case while the UUID is a
secret that is not directly available to user (although priv-
ileged programs running on the laptop can use the secret
to attest that a program is actually running on a machine).
The public key is used by the customer’s anti-theft system.

Before the laptop boots, the BIOS looks in the flash file
system for a file containing the laptop activation lease. This
lease contains an expiration date, the laptop’s SN, and a
signature over the date, the SN, and the laptop’s UUID.

e If the lease is not found, the laptop is deemed to be
in the disabled state and needs to be activated (Sec-
tion 5.4).

o If the lease is found and the date in the lease has not
passed, the laptop is in the activated state and boots
normally.

e If the lease is found but expired, the laptop is in the
expired state. The laptop needs a new lease on life to
continue working (Section 5.5).

If the laptop is not activated, the firmware will not boot
the operating system. Instead, it will wait to be activated.

5.4 Activation

Before a batch of laptops is shipped to each school, the
customer uses software provided by OLPC and the private
key that is paired with K; to generate a set of activation

leases for that batch. This activation list is loaded onto a
USB drive, and delivered to a project handler at the tar-
get school separately from the actual laptop shipment. The
handler will typically be a teacher or other school adminis-
trator. Each activation lease is keyed to a specific laptop,
so the activation list sent to one school cannot be used to
activate any other laptop batch.

When the USB drive is received, it is plugged into the
OLPC-provided school server, or another server running the
requisite software that is connected to a wireless access point.
School Servers are authenticated through the use of digital
certificates which are signed by a key which matches the
public key stored in the laptop’s BIOS.) Whichever server
takes on this role will be called the School Activation Server.
An activated XO laptop can be used for this purpose, if nec-
essary.

After receiving the matching laptop batch, the school’s
project handler will be tasked with giving a laptop to each
child at the school. When a child turns on the laptop the
laptop will securely communicate to the School Activation
Server the laptop’s SN and a cryptographic hash of the
UUID; the server will send back to the laptop its lease,
provided that it has one, or return an error if no lease is
available. In the event of an error, the laptop will display a
message and try again in an hour. (As a fall-back strategy,
the laptop can also look for a valid activation lease presented
on a file attached to a USB drive.)

The laptop verifies its activation lease by making sure that
the SN on the lease matches the SN stored in the BIOS, and
verifying the signature on the lease using the public key K3
in the BIOS. (This key cannot be overwritten without the
use of the Developer’s Key, discussed in Section 6.3). If the
lease is valid the laptop saves this lease in its flash, becomes
‘activated,” and proceeds to boot for the first time.

Activation keys by themsevles will not be subject to theft
because each activation key can only be used with the spe-
cific laptop for which it was made. Activation keys cannot
be held for ransom, because the customer can always create
more. However, activation keys and laptops can be stolen
together. This combination, together with a working school
server, could be used to activate the stolen laptops.

The goal of activation is not to eliminate theft in the de-
livery chain: clearly, the activation list distribution channel
is subject to attack even if the list is delivered out of band
from the actual laptops themselves. But the presence of the
activation list does make large-scale theft significantly more
involved, requiring a potential thief to discover details about
the activation list distribution and then resort to additional
theft or coercion to compromise the system.

5.5 Phone Home

On a regular basis (typically once each day) each laptop
will send a message containing the laptop’s SN, a times-
tamp, and a hash of the SN, timestamp and the UUID to
the country’s anti-theft service. (The message is encrypted
with the public key of the anti-theft server.) If the laptop
has not been reported stolen, the service will send back to
the laptop the current UTC time and a new activation lease.
After validating this lease the laptop will reset its clock to
the correct UTC time and save the lease in its flash.

The laptop must have the correct time because activation
leases expire—if they did not, a thief could simply use a
stolen laptop forever, provided that the laptop was never

reconnected to the Internet.

Typically leases will have an expiration time of several
weeks. In countries with intermittent Internet access leases
can be longer—we believe the activation system will be an
effective theft deterrent even with 3 month leases. Commu-
nities with no Internet connectivity (or that suddenly lose
it—for example, as the result of a failed satellite dish) can be
sent a USB stick with a new set of leases that can be loaded
onto the server or individually loaded onto each laptop. In
this manner, even laptops with failed network adapters can
continue to operate.

A monotonically increasing counter is used as protection
against replay attacks when a lease is being obtained from
the server. The real-time clock is protected from tamper-
ing in two ways: it is virtualized in the operating system,
disallowing unprivileged applications from modifying it. In
addition, the firmware will lock the machine and require re-
activation if it discovers, during boot, that the machine’s
clock is set earlier than the timestamp of the last activation
lease that was received (with a tolerance of 24 hours). This
means removing the RTC battery to reset the clock will not
help an attacker.

5.6 Theft

In the event that a laptop is stolen, this information will be
reported by the school to the customer’s anti-theft service.
If a stolen laptop asks the server for a new lease, it will
receive instead a signed message telling the laptop to return
to the deactivated state. In this case, the laptop must be
returned to the school to which it was originally assigned.
After the school reports that the laptop is no longer missing,
the laptop can be re-activated.

To avoid having a stolen laptop deactivated, a thief might
try to use the laptop as a stand-alone computer without net-
work access. In this event, the laptop will cease to function
when its current activation lease expires.

The anti-theft system cannot be bypassed as long as soft-
ware protection system P_SF_CORE is enabled (Section 7).

6. IDENTITY MANAGEMENT

The XO laptop includes an Identity Management system
whose primary purpose is to prevent students from mas-
querading as one another in their communications with each
other and with teachers. A secondary purpose of the system
is to control access to the Internet, which is expected to be
a scarce resource. The system is not designed to prevent
anonymous communication, to be a deterrent to software
theft or other kinds of malicious use, or to provide strong
certification of a user’s identity for standardized testing, e-
commerce, or voting.

As a result of these requirements, we decided against us-
ing a traditional identity infrastructure based on certifica-
tion authorities and certificate chains. Instead, the laptop’s
identity system is based on self-signed certificates and key
continuity management (KCM).

6.1 Child Identity Establishment

After the laptop activates, it automatically runs a pro-
gram that asks the child for his or her name, takes the child’s
picture, and generates a public/private key pair. (Entropy
from the child’s keystrokes and video camera is used to seed
the laptop’s random number generator.) This key pair is
stored (without a pass phrase) in the laptop’s flash and is

used to sign the child’s name and picture. The combination
of the name, picture and signature are the child’s “digital
identity.”

The laptop’s SN and digital identity are sent to the school’s
activation server and stored locally in a database. The
database is used both for generating class lists and for re-
porting laptop thefts.

Current plans are for the public components of the dig-
ital identity to be serialized using a new certificate format
based on the JavaScript Object Notation (JSON) [3], al-
though these certificates could easily be converted to self-
signed X.509 certificates if desired.

6.2 Child Identity Use

There will be many opportunities to use the digital iden-
tity. For example, in a collaborative education experience,
each laptop can display to children a small photograph of
the other students that they are working with, much in the
same way that programs like AOL Instant Messenger will
display chat icons. Teachers can use photographs and digi-
tal signatures to match up submitted homework with specific
students.

The child’s public key can also be used for establishing a
virtual private network (VPN) between the laptop and the
school server. This can prevent other students from eaves-
dropping on communications that the student has with an
application running at the school and over the Internet—
especially important since many of these packets will be
routed over a mesh network. Because each key is associ-
ated with a student, schools can use the child’s public key
and the VPN to restrict Internet access to currently enrolled
students.

6.3 The Developer’s Key

In addition to the child’s self-signed identity, each laptop
user may optionally request a “Developer’s Key.” This key
is a cryptographic token that is based on OLPC’s private
key and the laptop’s serial number and does not include the
child’s identity.

The developer’s key is not needed for normal use or pro-
gramming of the laptop. Instead, the developer’s key al-
lows the student to modify their laptop in a manner that,
if the child is not careful, could render the laptop inopera-
ble. Specifically, the developer’s key can be used to change
the laptop’s kernel, alter the flash allocation strategy, install
new operating systems, and so on. Because of this power,
the developer’s key can also be used to disable the laptop’s
anti-theft system (Section 5).

OLPC’s philosophy is that laptop user should be able to
obtain developer’s keys but that doing so should take time,
because the key poses a risk to the laptop and to the student.

6.4 School Server Authentication

When the laptop is within wireless range of a trusted
server (e.g. one provided by OLPC or the customer), the
laptop can securely respond to an authentication challenge
with its (SN, UUID) tuple. In addition to serving as a
means for the school to exercise network access control—
some schools will not wish to provide Internet access to
alumni, but only to current students—this authentication
can unlock extra services like backup and access to a decen-
tralized digital identity system such as OpenID [15].

OpenlD is particularly appealing to OLPC, because it can

be used to perpetuate passwordless access even on sites that
normally require authentication, as long as they support
OpenID. The most common mode of operation for current
OpenlD identity providers is to request password authenti-
cation from the user. With an OpenlD provider service run-
ning on the school server (or other trusted servers), logins
to OpenlD-enabled sites will simply succeed transparently,
because the child’s machine has been authenticated in the
background using this authentication system.

6.5 Key Continuity Management

Each laptop will maintain a small local database contain-
ing each public key that it has encountered and a count of
the number of times that the identity has been seen. This
information will be subtly conveyed to laptop users—for ex-
ample, by using colors. This will give the laptop’s users a
ready means for distinguishing between established identi-
ties and newcomers—and for readily identifying malicious
interlopers that might try to use another child’s name and
identity with a new public key.

7. SOFTWARE PROTECTION

The goal of the XO laptop’s software protection system
is to allow children to execute untrusted code while limit-
ing the ability of this code to inflict harm to the system, on
the user, or on other laptops. Whereas most of todays com-
puter security systems are designed with the goal of keeping
bad software out of a computer system or network, the XO’s
security system is designed instead to restrict the function-
ality allowed to all running programs. There is no reason
that a single-user game of Solitaire needs to be able to ac-
cess the network, read or modify the user’s documents or
turn on a computer’s built-in camera or microphone. On
our system this kind of functionality is denied by default to
all programs running on the computer, and is only provided
to specific applications if the capability is required when the
application is installed.

We realize our software protection goal through the use of
a non-interference model implemented with cryptographic
protection for the BIOS and kernel, protections of the run-
ning operating system through the use of the Linux VServer
kernel patch [21], and a fine-grain privilege system that re-
quires applications to declare what permissions they need
when they are installed.

We believe that most of today’s educational and entertain-
ment programs can be written to function within the appli-
cation limitations that we have designed. However, there
are certain to be some applications that cannot function
within the limiting polices described below. These appli-
cations will be distributed with a second signature, signed
with an OLPC or customer key, that tells the installer to
disable specific security policies for the application after it
is installed.

7.1 The Non-interference Model

The non-interference security model holds that “One group
of users, using a certain set of commands, is non-interfering
with another group of users if what the first group does with
those commands has no effect on what the second group of
users can see.”[8]

The XO uses a modified version of the noninterference
model in which software running on the laptop should be
prohibited from interfering with other programs, other lap-

tops, or the laptop’s own hardware. We enforce this by pre-
venting software from doing any one of several “bad things:”

Damaging the machine’s hardware. Software wishing to
render a laptop inoperable may try to ruin the ma-
chine’s BIOS, preventing it from booting or being re-
flashed. It may also attempt to exhaust the number
of write/erase cycles that the primary NAND chip can
perform.

Damaging the machine’s software. Software may try to
delete or damage the operating system, which would
require the machine to be re-imaged and reactivated
to run.

Degrading the machine’s performance. Software may
try to degrade the CPU or drain the battery.

Compromising the user’s privacy. We see two threats:
software might send user-owned information such as
documents and images over the network without au-
thorization; and software might eavesdrop on the user
via the laptops’ built-in camera or microphone.

Damaging the user’s data. Malicious software might at-
tempt to delete or corrupt the user’s documents, create
large numbers of fake or garbage-filled documents, or
attack system services that deal with data, such as the
search service.

Damaging the user’s reputation by impersonating the
user. Malicious software might attempt to abuse the
digital identity primitives on the system, such as digi-
tal signing, to send messages appearing to come from
the user, or to abuse previously authenticated sessions
that the user might have created to privileged resources,
such as the school server.

Attacking other machines. Malicious software can attack
other computers—for example, by launching denial-
of-service attacks or by attempting to take them over
through the use of binary exploits.

Given the open nature of the XO, we cannot prevent chil-
dren from intentionally using their laptops to attack others:
that type of protection could only be achieved by restricting
children to running only a small set of specially pre-approved
network applications (and even then the protection might
not be complete). Instead, our software security policies are
designed to prevent legitimate software from being subverted
to malicious ends, and to assure that intentionally malicious
software is not installed without the user’s express knowl-
edge and permission.

7.2 Core and Runtime Protection

When the laptop is first powered on, the BIOS can ei-
ther boot a cryptographically signed kernel, refresh the com-
puter’s operating system from a signed distribution, or re-
flash the BIOS from a signed new BIOS. The collection of
BIOS protections are collectively referred to as P_SF_CORE.

Once the kernel boots, the P_SF_RUN runtime protection
system takes over. As mentioned above, this system is based
on VServer, a lightweight Linux virtualization system that

has been widely used at shared hosting Internet service providers

for several years. VServer allows us to give different pro-
cesses different views of the file systems and to significantly
restrict the rights afforded to specific processes.

When P_SF_RUN is engaged, the system marks all system
files read-only at boot, preventing their modification by any
process, including those owned by the superuser.

P_SF_CORE and P_SF_RUN are independent: the system can
boot with P_SF_CORE enabled but P_SF_RUN disabled. In
this case, VServer creates a copy-on-write (COW) file sys-
tem that is a union of the underlying operating system and
any changes that the user initiates. If P_SF_RUN is later
re-enabled, the user’s read-only files will include the local
modifications. However, these modifications can be reverted
by simply throwing away the copy. Thus, the COW system
makes it possible for users to make changes to the laptop’s
operating system and applications while retaining the abil-
ity to easily revert these changes without having to reflash
the laptop.

7.3 Application Declarations and Installation

As with most computers, we expect that software on the
XO will be divided into more or less stand alone applications
that communicate with the user through the computer’s I/O
devices, that may use the network, and that wish to keep
persistent information in the computer’s file system. But
whereas other systems place few if any limitations on ap-
plications, the XO runs applications in a restrictive runtime
environment.

Every application that is installed on the laptop does not
need to be able to use every facility that the laptop provides.
Yet many security problems in recent years have resulted
when attackers have devised some clever way to inject their
own code into an existing benign application and force it to
do their bidding. Approaches such as StackGuard [2] have
attempted to solve this problem by making programs more
resistant to code-injection attacks. While we incorporate
similar technology on the XO, our fundamental approach
to this problem of hostile code is a different one: we limit
the damage that injected code can do by limiting each ap-
plication program to a repertoire of functionality that the
application declares when it is installed.

Each application that runs on the XO is distributed as
a bundle that includes the executable code, resources, the
digital signature of the program’s author or publisher, and
a list of privileges that the application require. This bundle
is read by the laptop’s installer service, which queries the
bundle for the program’s desired security permissions and
configures the laptop’s Security Service accordingly. After
installation, the per-program permission list is only modifi-
able by the user through a graphical interface.

We plan to use social pressure to convince application de-
velopers to distribute their programs with the minimal priv-
ileges necessary to accomplish the intended task. We hope
that, over time, the laptop’s users will become suspicious of
programs asking for privileges that seem unnecessary and
refuse to install them.

7.4 The Document Journal

Unlike with traditional machines, user documents on the
XO laptop are not stored directly on the filesystem. Instead,
they are read and stored through a service that provides an
object-oriented interface to user documents (see Figure 3).
We call this service the Document Journal.

thenby: Title v

s O
“Fishes in the Sea” with: ¢ 577 % (+ 3 more)

Today, at 11:25 PM

Yesterday, at 6:45 PM “My Cousins”

- Yesterday, at 9:25 PM ’ “my homework”

* Yesterday, at 12:40 PM “A Photo of My Cat”

January 18, at 2:15 PM & “avout cats” witn)'(
January 18, at 1:13 PM ‘ “Our school” with: * gog %
* January 17, 2007, at 12:35 PM “A Photo of My Cat 2"
January 10, at 5:45 PM ' “Thai history” with:)'(2% *)'(

Figure 3: The Document Journal

Programs on the XO may not use the open() call to ar-
bitrarily open user documents in the system, nor can they
use any version of the opendir() or readdir() calls to list
available documents. Instead, when a program wishes to
open a user document, it asks the system to present the
user with a ’file open’ dialog. If the user selects a file, the
open file descriptor is returned to the program. This system
provides protection for data in the journal against malicious
programs; we call this protection system (P_DOCUMENT).

Benign programs are not adversely impacted by the need
to use the file store for document access, because they gener-
ally do not care about rendering their own file open dialogs
(the rare exception is programs that create custom dialogs
to e.g. offer built-in file previews; for the time being, we are
not going to support this capability).

Malicious programs, however, lose a tremendous amount
of ability to violate the user’s privacy or damage her data,
because all document access requires explicit assent by the
user.

7.4.1 Journal Rate Limiting (P_DOCUMENT_RL)

The file store is rate limited so that programs may not
store new files or new versions of old files faster than a pre-
determined rate (e.g., once every 30 seconds).

7.4.2 Journal Browsing (P_DOCUMENT_RO)

Certain kinds of software, such as photo viewing pro-
grams, need access to all documents of a certain kind (e.g.
images) to fulfill their desired function. This is in direct op-
position with the P_DOCUMENT protection which requires user
consent for each document being opened.

To resolve the quandary, we must ask ourselves: “from
what are we trying to protect the user?.” The answer, here,
is a malicious program which requests permission to read all
images, or all text files, or all e-mails, and then sends those
documents over the network to an attacker or posts them
publicly, seriously breaching the user’s privacy.

We solve this by allowing programs to request read-only
permissions for one type of document (e.g. image, audio,
text, e-mail) at installation time, but making that permis-
sion (P_DOCUMENT_RO) mutually exclusive with asking for any
network access at all. A photo browsing program would
therefore be unable to connect to the Internet without the
user’s explicit permission.

7.4.3 Journal Backup (P_DOCUMENT_BACKUP)

The laptop will automatically perform incremental back-
ups of user documents whenever it is in range of servers that
advertise themselves as offering a backup service.

Because we wish to avoid having children generate a new
digital identity if their laptop is ever lost, stolen or broken,
by default the child’s cryptographic keypair is also backed
up to the primary backup server (i.e.: the server operated
by the school). Given that a child’s private key normally has
no password protection, stealing the primary backup server
(normally the school server) offers the thief the ability to
impersonate any child in the system. For now, we deem this
an acceptable risk, and we assume that school servers will
be provided with an adequate level of physical and logical
security.

7.5 NAND Protection Policies

As discussed above, the laptop’s NAND flash can only
perform a limited number of erase/rewrite cycles before it
becomes unusable. Under normal usage this lifetime is not
a consideration, as the laptop’s JEFS2 [22] filesystem moves
stored files around as necessary to assure even leveling of
the entire device. However, an unchecked malicious program
that continually wrote random, uncompressable data could
use up the flash device’s lifetime within a few days, whereas
normally we expect the flash to last the laptop’s lifetime.

7.5.1 Protecting the NAND flash (P_NAND_RL)

To prevent malicious software from prematurely aging the
flash, each program’s ability to issue write commands is con-
trolled by a token bucket (similar token buckets are used for
network flow control; see for example [17]). When the bucket
is drained writes will either be delayed with an exponential
backoff or blocked (depending on the result of field testing.)

7.5.2 Sandbox and Scratch Space (P_SANDBOX)

Each XO application executes in a fortified chroot ()’ed
filesystem that is severely restricted. It normally has no
access to system paths such as /proc or /sys, cannot see
other programs on the system or their scratch spaces, and
only the libraries it needs are mapped into its scratch space.
It cannot access user documents directly, but only through
the document journal service (Section 7.4).

Every program scratch space has three writable directo-
ries, called ‘tmp’, ‘conf’, and ‘data’. The program is free
to use these for temporary, configuration, and data (re-
source) files, respectively. The rest of the scratch space is
immutable; the program may not modify its binaries or core
resource files. This model ensures that a program may be re-
stored to its base installation state by emptying the contents
of the three writable directories, and that it can be com-
pletely uninstalled by removing its bundle (scratch space)
directory.

To prevent disk exhaustion attacks, each program is given
a maximum of 5MB of NAND space where the application
can store configuration information and temporary files.

7.6 Privacy Protection

The XO’s journal facility (Section 7.4) prevents software
from browsing the user’s files by requiring that each file be
explicitly opened by the user. The journal browsing lim-
itation (P_DOCUMENT_RO) protects the user from wide-scale
privacy breaches by software that purports to be a "viewer”

of some broad class of documents.
In addition to these protections, the laptop supports sev-
eral other protection policies.

7.6.1 Microphone and Camera Protection (P_MIC_CAM)

We will have two LEDs, one each for the camera and mi-
crophone, which will be lit by the hardware whenever the
corresponding device is engaged. The LEDs turning on un-
expectedly should tip off the user to potential eavesdropping.
Having the LEDs blink for this purpose was evaluated, but
was thought too distracting; the LEDs are always on when
active. Care was also taken to avoid hysteresis attacks: it is
not possible to enable capture from the microphone or cam-
era for such a short time that the LEDs do not noticeably
light.

The use of the camera and microphone requires a special
permission which must be requested at install-time for each
program wishing to do so. This permission does not allow
a program to instantly turn on the camera and microphone.
Instead, it merely lets the program ask the user to allow the
camera or microphone (or both) to be turned on.

Thus, any benign programs which are taken over but haven’t
declared themselves as needing the camera or microphone
cannot be used to turn on either.

Programs which have declared themselves as requiring
those privileges (for example, a videoconferencing app) can
instruct the system to ask the user for permission to enable
the camera and microphone components. If the request is
granted, the program is granted the capability to toggle the
components to the “on” state for a limited period of time
(e.g. 30 minutes).

Programs cryptographically signed by a trusted authority
will be exempt from having to ask permission to manipulate
the components, but because of the LEDs which indicate
their status, the potential for abuse is still rather low.

7.6.2 Background Sound Permission (P_DSP_BG)

Programs with this permission may play audio when run-
ning in the background. This permission prevents otherwise
benign programs from being taken over and used to play
annoying or embarrassing sounds.

7.6.3 X Window System Protection (P_X)

When manually assigned to a program by the user, this
permission lets a program send synthetic mouse X events to
another program. Its purpose is to enable the use of accessi-
bility software such as an on-screen keyboard. The permis-
sion is NOT requestable at install-time, and thus must be
manually assigned by the user through a graphical interface,
unless the software wishing to use it is cryptographically
signed by a trusted authority.

Without this permission, programs cannot eavesdrop on
or fake one another’s events, which disables key logging soft-
ware or sophisticated synthetic event manipulation attacks,
where malicious software acts as a remote control for some
other running program.

7.7 Other Protection Policies

7.7.1 Network Protection (P_NET)

Applications must specially declare that they wish to make
use of the network to either receive or initiate connections
over the wireless mesh. We are considering the following

kinds of network limitations:

e Boolean network on/off restriction
e Bandwidth throttling with burst allowance
e Connection rate limiting

e Packet destination restrictions by host name, IP and
port(s)

e Time-of-day restrictions on network use
e Data transfer limit by hour or day

e Server restrictions: Boolean and per-port

Reasonable default rate and transfer limits will be im-
posed on all programs except those explicitly granted un-
restricted network access by OLPC or the customer. Addi-
tional restrictions might be added to this list as we complete
our evaluation of network policy requirements.

7.7.2 CPU rate limiting (P_CPU_RL)

Foreground programs may use all of the machine’s CPU
power. Background programs will be limited to a fixed
amount (currently 10%) unless given explicit permission by
the user in the Security Center.

The XO’s UI environment (currently named “Sugar”) only
supports maximized application windows, not the overlap-
ping windows popular on most computers today. When we
talk about foreground and background execution, we are re-
ferring to programs that are, or are not, currently in control
of the entire screen.

7.7.3 Real Time Clock Protection (P_RTC)

Because the computer’s real time clock is used by the anti-
theft system, we cannot allow the user to set or change the
clock. This creates a problem for some applications which
require the need to make adjustments—for example, we have
a music program that must synchronize to within 10ms with
any machines with which it co-plays a tune.

To overcome this difficulty, each running application has
its own real time clock offset which it is free to change. The
offset is lost when the program exits.

8. WHAT’S NOT ON THE LIST

Several features traditionally associated with laptops or
computing devices for children are missing from our list.
Our reasons for not including these features are practical,
not ideological.

8.1 Filesystem encryption

Cryptographic file systems are increasingly popular on
portable devices because cryptography can protect infor-
mation even if an adversary has physical possession of the
device—provided that the encryption key is not physically
present on the captured device, of course.

We have not implemented a cryptographic file system on
the XO for two reasons. First, because we intend the laptop
to be used by very young users, we have explicitly designed
the laptop so that it does not rely on passwords or other
user-remembered secrets. Of course, without a password or
some kind of physical token that is separate from the laptop,
there is no way to protect the cryptographic key in the event

that the laptop is stolen—thus, the cryptographic file system
would not provide any real protection.

The second reason that we had when originally deciding
against implementing a cryptographic file system is that the
laptop’s original CPU was not up to the task. The XO-1
was targeted to ship with the AMD Geode GX-500 proces-
sor running at 366 MHz, which could only encrypt about
4MB/s with the AES-128 algorithm in CBC mode, a tenth
of the throughput of the NAND flash chip. However, it was
decided recently that the laptops will ship with a Geode
LX-700 which features an on-board AES accelerator. This
makes it very likely that we will offer the ability of filesystem
encryption in the future, by way of a P_PASSWORD protection
that might be enabled on laptops used by older children. In
the meantime, we expect tools will be made quickly available
by the community that allow children to encrypt individual
files or directories, e.g. by providing graphical front-ends to
available tools such as GPG.

8.2 Objectionable content filtering

As outlined in the threat model, the Bitfrost platform gov-
erns system security on the XO laptops, but does not have
any provisions for content control. Customers who desire
filtering of material of sexual, political or religious nature
will almost certainly implement these filtering policies at
the schools using special-purpose software or at the national
level.

8.3 Multiple Users

Although our current approach is to design the laptop for
use by a single child, it is quite likely that some laptops will
be used by other children or family members. At some point
in the future we may provide for multiple users, but at the
present this is beyond our engineering capacity.

It should be noted that no security mechanisms described
in this document require modification to support multiple
users. Instead, the required changes lie in the general OS
and GUI layers

9. CONCLUSION

Bitfrost takes is name from Bifrost, the mythical Norse
rainbow bridge which keeps mortals, inhabitants of the realm
of Midgard, from venturing into Asgard, the realm of the
gods. In effect, Bifrost is a majestic security system de-
signed to keep out unwanted intruders. In the 12th century
Icelandic historian and poet Snorri Sturluson wrote of the
bridge, “It is of three colors, and very strong, and made
with cunning and with more magic art than other works of
craftsmanship. But strong as it is, yet must it be broken,
when the sons of Muspell shall go forth harrying and ride
it, and swim their horses over great rivers; thus they shall
proceed. . . nothing in this world is of such nature that it may
be relied on when the sons of Mispell go a-harrying.”[20]

This story is quite remarkable, as it amounts to a 13th
century recognition of the idea that there’s no such thing as
a perfect security system.

To borrow Sturluson’s terms, we believe that we have im-
bued the OLPC security system with cunning and more
magic art than other similar works of craftsmanship—but
not for a second do we think that we have designed some-
thing that cannot be broken when talented, determined and
resourceful attackers go forth harrying. This was not the
goal. The goal was to significantly raise the bar from the

current, deeply unsatisfactory, state of desktop security. We
believe Bitfrost accomplishes this, though only once the lap-
tops are deployed in the field will we be able to tell with some
degree of certainty whether we have succeeded.

9.1 Related Work

In 1982 Goguen and Meseguer at SRI proposed that the
principle of noninterference could be used as a model for
computer security in multi-user operating systems [8]. The
noninterference model was a reaction to the difficulty that

the industry had experienced in implementing the Bell-Lapadula

security model, and the realization that the model did not
protect real-world computer systems against many real-world
problems [1].

Reid observed in 1987 that users rarely need to run soft-
ware that has not been properly installed [18]. Kirovski,
Drinic and Potkonjak made the same observation in 2002
and developed a working implementation that limited exe-
cution to installed software. [11]

The idea of a user-auditable application manifest describ-
ing particularly notable application functions was proposed
by Garfinkel as part of software “label” mandated by a hy-
pothetical “Pure Software Act” [5], although no enforcement
mechanism was imposed beyond regulation and litigation.

The “security by designation” approach used by the XO’s
journal is directly based upon the work of Yee [24], while
the isolation provided between XO applications is similar
to the Polaris system developed by Stiegler et. al. [19]. It
achieves a compromise similar to what the XO operating
system 1is after: enforcing privilege separation while main-
taining compatibility with applications written for ambient
authority operating systems. The underlying philosophy of
secure interaction design is inspired by Yee as well [23].

The laptop’s bottom-up PKI, known as Key Continuity
Management, was proposed as a security model by Gut-
mann [9] and analyzed by Garfinkel [6]. Garfinkel conducted
an analysis of KCM’s strengths and weaknesses against a va-
riety of attacks [7].

Techniques for restricting root in open source operating
systems were pioneered by the FreeBSD “jail” facility [10]
and refined by the VServer project [21].

Product activation and “phone home” schemes are widely
used in today’s software industry.

9.2 Acknowledgments

George Dinolt at NPS and Ka-Ping Yee at Berkeley pro-
vided useful feedback on an earlier draft of this article.

10. REFERENCES

[1] D. Bell and L. LaPadula. Secure computer systems:
Mathematical foundations and model. report MTR
2547 v2. Technical report, MITRE, November 1973.

[2] Crispan Cowan, Calton Pu, Dave Maier, Jonathan
Walpole, Peat Bakke, Steve Beattie, Aaron Grier,
Perry Wagle, Qian Zhang, and Heather Hinton.
StackGuard: Automatic adaptive detection and
prevention of buffer-overflow attacks. In Proc. 7th
USENIX Security Conference, pages 63—78. Usenix,
San Antonio, Texas, jan 1998.
citeseer.ist.psu.edu/cowan98stackguard.html.

[3] D. Crockford. RFC 4627: The application/json media
type for javascript object notation (json), July 2006.

[4]

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]
(13]
(14]

[15]
(16]

(17]

(18]

(19]

20]

(21]
(22]

23]

(24]

Peter Elbow. In defense of private writing. Written
Communication, 16(2):139-170, 1999.

Simson Garfinkel. The pure software act of 2006.
TechnologyReview.com, April 7 2004. http://simson.
net/clips/2004/2004.TR.04.PureSoftware.pdf.
Simson L. Garfinkel. Design Principles and Patterns
for Computer Systems that are Simultaneously Secure
and Usable. PhD thesis, MIT, Cambridge, MA, April
26 2005.

Simson L. Garfinkel and Robert Miller. The johnny 2
standardized secure messaging scenario. In Symposium
on Usable Privacy and Security. ACM Press, 2005.
Joseph A. Goguen and José Meseguer. Security
policies and security models. In Proceedings of the
Berkeley Conference on Computer Security, pages
11-22. IEEE CS Press, 1982.

Peter Gutmann. Why isn’t the Internet secure yet,
dammit. In AusCERT Asia Pacific Information
Technology Security Conference 2004; Computer
Security: Are we there yet? AusCERT, May 2004.
http://www.cs.auckland.ac.nz/ pgut001/pubs/
dammit.pdf.

Poul-Henning Kamp and Robert N. M. Watson. Jails:
Confining the omnipotent root. In System
Administration and Network Engineering (SANE)
2000. Stichting NLnet and USENIX, May 2000. http:
//docs.freebsd.org/44doc/papers/jail/jail .html.
D. Kirovski, M. Drinic, and M. Potkonjak. Enabling
trusted software integrity. In In Proceedings of
ASPLOS, pages 108-120, 2002.

OLPC. Hardware specification, 2007. http://wiki.
laptop.org/go/Hardware_specification.

OLPC. Sugar, 2007.
http://wiki.laptop.org/go/Sugar.

Open firmware home page, 2007.
http://www.openfirmware.org.

What is OpenlD, 2007. http://openid.net.
Seymour Papert and Idit Harel. Constructionism.
Ablex Publishing Corporation, 1991.

C. Partridge. RFC 1363: A proposed flow
specification, September 1992. Status:
INFORMATIONAL.

Brian Reid. Reflections on some recent widespread
computer break-ins. Commun. ACM, 30(2):103-105,
1987. ISSN 0001-0782.

Marc Stiegler, Alan H. Karp, Ka-Ping Yee, Tyler
Close, and Mark S. Miller. Polaris: virus-safe
computing for windows xp. Commun. ACM, 49(9):
83-88, 2006. ISSN 0001-0782.

Snorri Sturluson. Edda. Everyman Paperback Classics,
1995.

Linux VServer. http://linux-vserver.org/.

David Woodhouse. The journaling flash file system,
July 2001.

Ka-Ping Yee. User interaction design for secure
systems. In Proceedings of the 4th International
Conference on Information and Communications
Security. Springer-Verlag, 2002. LNCS 2513.

Ka-Ping Yee. Aligning security and usability. Security
& Privacy Magazine, 2:48-55, Sept—Oct 2004.

