
Secure Software Installation in a Mobile Environment
Andreas P. Heiner

Nokia Research Center
Itamerenkatu 11-13

Helsinki, Finland
Andreas.heiner@nokia.com

N. Asokan
Nokia Research Center

Itamerenkatu 11-13
Helsinki, Finland

N.Asokan@nokia.com

ABSTRACT
Software security in mobile devices today is done by granting
privileges to software, usually based on code signing. The cost
of obtaining signatures and meeting strict quality requirements
deters hobbyist developers from participating and contributing
to application development. If a certain piece of software does
not come with an acceptable signature, the mobile device may
give the user the option of deciding whether that software
should be granted the requested privileges. Naturally, designing
the user interaction for this step without hampering usability and
security is tricky. When users are simply prompted whether they
want to grant certain privileges to some software, they often do
not have enough information to understand the implications of
this action.
We propose that using community feedback can be an effective
way of helping the user to decide whether to grant privileges to
software. Community feedback includes opinions and ratings
on both security and functionality attributes of software. We
argue that users will use community feedback to decide whether
they want to use a piece of software and that the decisions to
download, install, and grant necessary privileges are implied by
the decision to use.

1. INTRODUCTION
Mobile phones used to be closed devices with fixed
functionality. In the last decade, they have become increasingly
open. Platforms like Symbian OS, Java2 Micro Edition (J2ME),
and Windows Mobile allow the possibility to install new
applications to extend the functionality of mobile phones.
Openness brings in the risk of malware just as in the world of
personal computers.
To deal with this risk, designers of mobile device platforms
have introduced new security architectures. For example,
Symbian OS supports a platform security model, and J2ME has
Java security architecture. In all of these architectures, the
access control decision to assign privileges to software
processes is based either on code signing or on explicit user
approval, or a combination thereof. In this paper, we point out
the difficulties of the privilege assignment step, and discuss how
it can be improved.

1.1 Software security models
In Symbian platform security and J2ME security architecture,
the software package includes an explicit statement of the
privileges needed for the software to do its job. The platform
security software on the mobile device will decide whether the
requested privileges may be granted. Both security architectures
implement code signing to enable a trace-back to a trusted entity
that endorses the software.
In Symbian OS platform security, privileges granting is done by
the software installer. In case software is signed by an
(ultimately) high-level Certificate Authority installation
proceeds without further questions. If the signature is not
present the user has to explicitly grant these privileges (Figure
1a). The text explaining the warning does not provide relevant
information to the user. The “Additional Details” link leads to
four pages explaining the general philosophy behind trusted
applications; the following four pages list for what resources
permissions can be set.

Figure 1 Pop-up screens when a) installing software on a
Symbian device and b) run-time privilege requests in J2ME
applications.
In contrast to Symbian platform security, in J2ME, privilege
granting can take place at the time of access to a resource
(Figure 1b). The prompt suggests asking permission to
connecting to that URL. The actual function is to open a
network connection and send and receive data. The purpose of
the prompt is mostly cost control, and to a lesser extent security.

Copyright is held by the author/owner. Permission to make
digital or hard copies of all or part of this work for personal or
classroom use is granted without fee.
Symposium On Usable Privacy and Security (SOUPS) 2007,
July 18-20, 2007, Pittsburgh, PA, USA
Copyright 2007 Nokia Corporation

Thus, the two alternative approaches to grant privileges to
software have serious drawbacks. Code signing leads to better
usability but is expensive and hence discourages out a large
portion of the developer community. User prompting avoids the
developer cost, but suffers from not being able to communicate
the nature of the prompt effectively to the user, and hence could
easily lead to a user granting privileges to malicious software.

2. TOWARDS A FRAMEWORK FOR
SECURE SOFTWARE INSTALLATION
2.1 Design considerations
Software installation is preceded by the user loosely defining
the required functionalities, searching for potential matches, and
finally downloading and installing the selected application. The
first two steps, definition and search, is a recursive process and
very problematic in a mobile environment due to device
limitations. Bandwidth may be costly and/or small, and the
display of the top-of-the-line phone models is typically 6 times
smaller than a low-end laptop. Keyboard input is clumsy at best,
and battery resources are also limited. Especially WLAN access
is resource demanding.
Obtaining all essential information (functionality, security
advisory, privacy advisory) in as few steps is essential. It is
equally important that the user keeps control over the process,
and makes the final decision [2]. The handset limitations require
a concise representation of that information. “Security by
admonition” [3] and “Trust in a socio-technical sense” [1] are
therefore important elements of the framework. We make the
following design considerations
1. Download and installation must be transparent and integral

part of the software functionality definition–usage process.
Software selection implies usage, and user interaction is
only needed when the software is actually used.

2. The installation process is independent of the access
technology (Bluetooth, cellular…). From a user perspective
the difference is cost rather than technology

3. Access control and installation decisions must be done on
the device. Doing so captures push-mode installations of
unknown sources

4. Software is certified implicitly by usage patterns. The
“community certification” is a community effort of
reviewing the software, and reporting suspect software and
sites to experts for obtaining privacy- and safety advisories.

5. Users can add descriptive data to the software.
6. Attributes of already installed software can be updated.

Safety attributes may change urging the users to update the
software, or even de-install the software.

7. All software is safe until found otherwise.
The term “community certification” (consideration 4) deserves
some elaboration. One definition of product (software)
certification is “established suitability for a specified
purpose”[5]. SymbianSigned [4] formulates a set of technical
requirements; if all tests are passed the software is Symbian
certified (meets the architectural requirements). The usable
security research community uses similar phrases as necessary
condition for secure software [1][3]. The purpose is defined by
the author; the community (having similar semantics in that
domain) evaluates the suitability for that purpose by ratings and
written reviews.
Consideration 7 is the only pragmatic approach for creating an
open and affordable development environment. In fact, this
approach is also taken by anti-virus software vendors; they react
on reports of ill-behaving software.

The above considerations mitigate most of the usability
problems at installation time. Security at runtime is more
difficult. One can image a scenario in which the application is
used for a given use case. The privileges used by the community
are automatically downloaded. Based on the description of the
use case by the community the user automatically downloads
these settings. The same could apply for access to web sites.
However, in all cases the user makes the final decision. The
needed information (security advisory, community certification,
etc.) is given in a short description (e.g., represented by an icon)
on one page, with links to the more detailed information (reason
for the warning, who gave the review, etc.).

2.2 Architecture
The high-level architecture envisions an environment in which
all applications have a unique identifier that can be calculated
from the executable application code. Moreover, each
application has a number of searchable metadata (e.g., type,
author, keywords, security advisory, etc.). The user can specify
the needed functionality, and a search is performed. The
metadata of potential applications is downloaded to the mobile
device and presented to the user. After some iteration the user
selects an application. The application is downloaded, and an
integrity check is performed. After that the application is
installed without further prompting. The process includes an on-
device and in-proximity search. In that case security- and safety
advisories may be updated if so desired.
The actual implementation is likely to include a portal where all
data are collected. It is also facilitates the search process.
However, the final decision to install is made on the handset,
after the implicit download via one of the wireless interfaces.
Only if the footprint of the application does not match that of
the application identifier installation is aborted.

3. STATUS AND FURTHER WORK
At present we are implementing a first version of the proposed
architecture. We plan to perform small-scale user studies to
verify our assumptions and improve the user interface.

4. REFERENCES
[1] Flechais, I.; Riegelsberger, J. and Sasse, M.A. Divide and

Conquer: the role of Trust and Assurance in the design of
secure Socio-Technical Systems. In Proceedings of the
2005 workshop on new security paradigms (Lake
Arrowhead, California, USA September 20-23, 2005)

[2] Stoll, J. and Park, F. Exploring Explicit Security Actions.
In Proceedings of the SIGCHI conference on Human
factors in computing systems(CHI ’2007) (San Jose,
California, USA, April 28-May 3, 2007)

[3] Yee, Ka-Ping. Guidelines and Strategies for Secure
Interaction Design In Security and Usability: Designing
Secure Systems that People Can Use. Cranor, L.F. and
Garfinkel, S (eds.) O’Reilly & Associates 2005 247-274

[4] SymbianSigned.com: test criteria
(https://www.symbiansigned.com/app/page/overview/testcr
iteria)

[5] Wikipedia: certification
(http://en.wikipedia.org/wiki/Product_certification

https://www.symbiansigned.com/app/page/overview/testcriteria
https://www.symbiansigned.com/app/page/overview/testcriteria
http://en.wikipedia.org/wiki/Product_certification

	INTRODUCTION
	Software security models

	TOWARDS A FRAMEWORK FOR SECURE SOFTWARE INSTALLATION
	Design considerations
	Architecture

	STATUS AND FURTHER WORK
	REFERENCES

