
Intentional Access Management:
Making Access Control Usable for End-Users

Xiang Cao
University of British Columbia,

Dept. of ECE, 2332 Main Mall, Vancouver BC, Canada
1-604-827-5909

xiangc@ece.ubc.ca

Lee Iverson
University of British Columbia,

Dept. of ECE, 2332 Main Mall, Vancouver BC, Canada
1-604-822-3381

leei@ece.ubc.ca

ABSTRACT
The usability of access control mechanisms in modern distributed
systems has been widely criticized but little studied. In this paper,
we carefully examine one such widely deployed access control
mechanism, the one embedded in the WebDAV standard, from
the point-of-view of an end-user trying to decide how to grant or
deny access to some resource to a third party. This analysis points
to problems with the conceptual usability of the system.
Significant effort is required on the part of the user to determine
how to implement the desired access rules; the user, however, has
low interest and expertise in this task, given that such access
management actions are almost always secondary to the
collaborative task at hand. The analysis does however indicate a
possible solution: to recast the access control puzzle as a decision
support problem in which user intentions (i.e. the descriptions of
desired system outputs) are interpreted by an access mediator that
either automatically or semi-automatically decides how to achieve
the designated goals and provides enough feedback to the user.
We call such systems intentional access management (IAM)
systems and describe them in both specific and general terms. To
demonstrate the feasibility and usability of the proposed IAM
models, we develop an intentional access management prototype
for WebDAV. The results of a user study conducted on the system
show its superior usability compared to traditional access
management tools like the access control list editor.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection – access
controls. H.1.2 [Models and Principles]: User/Machine Systems
–human factors, human information processing.

General Terms
Design, Security, Human Factors.

Keywords
Access control, usability, intentional access management,
WebDAV.

1. INTRODUCTION
Technological advances in computers and networks, especially the
proliferation of the Internet, have made it easier for novice or
average end-users to share their information and collaborate with
others. However, with this unprecedented ease of sharing
information, it becomes increasingly challenging for users to
protect their shared information against unauthorized use.
Compared with professional security administrators, end-users
usually have limited technical capacity and less security
knowledge, and so find it more challenging to properly use and/or
maintain the security mechanism provided to control access to
their resources [1] [2] [15].

To end-users, security is usually a secondary goal [15]. People
just want security in place to protect them while they are
achieving their primary goal (e.g., browsing web pages, co-
authoring papers, etc.). Sometimes security is a “necessary evil”
(i.e., something a user is required to do but is not interested in
doing). In addition, security tasks may not be everyday tasks for
end-users. They may need to be done every few weeks or months.
If the operations of managing security are arcane, end-users will
have difficulty in remembering them for the next time [11].
Further, making security usable is actually an enabling task which
can encourage end-users to share information [14].

We are primarily interested in security for information sharing in
modern cyberspace, where access control remains a major
challenge. Therefore, in this paper we limit the scope of our
discussion to making access control more usable for end-users,
although some of the results may also apply to other security
usability problems. In particular, to support information sharing,
we choose shared file-systems as the underlying collaborative
infrastructure. In this context, there is a need for fine-grained,
user-centered, dynamic control of sharing to match trust and ad-
hoc collaboration. The solution we are pursuing is the end-user
management of resource sharing with minimal changes to backend
infrastructure. Making such management usable enough to be
effective for those non-expert end-users then becomes our main
task.

The traditional access controls include mandatory access control
(MAC), discretionary access control (DAC), and role-based
access control (RBAC) [13]. To implement the access controls,
access control lists (ACLs), capability lists, or policy-based
mechanisms are often adopted. Since our research interest is
information sharing that can be controlled by end-users, in this

Copyright is held by the author/owner. Permission to make digital or
hard copies of all or part of this work for personal or classroom use is
granted without fee. Symposium On Usable Privacy and Security
(SOUPS) 2006, July 12-14, 2006, Pittsburgh, PA, USA.



paper we are looking at discretionary access control with a
potential variety of enforcement mechanisms.

In this paper, we use the term, “access management,”to refer to
the process of formulating the access control rules (rule sets,
group memberships, attributes, etc.) for an access control system
to achieve a desired set of access privileges for a user or users.
This access management is performed by a user interacting with
an access control system. In a typical access control system, users
interact with the system through a graphic user interface (GUI),
which allows them to manipulate the internal access control
mechanism directly or indirectly. Most of the management
burden, however, such as formulating the rules based on his or her
security goals is carried by the end-user. Given end-users low
interest in security, security systems that place less of a burden on
them for access management should be inherently more usable. In
this paper we will demonstrate that the management workload laid
on the user is usually too heavy, even for a simple access
management task, if no appropriate decision support is provided
to the user. To address this problem, some novel access
management models, called intentional access management
models, which isolate end-users from access control mechanisms,
are then proposed.

To demonstrate the usability problems in current access control
systems and the feasibility of our proposed solution, we have
chosen an existing access control mechanism, the WebDAV
access control list standard [4], as the starting point for usability
improvement. In particular, the WebDAV (Web-based Distributed
Authoring and Versioning) [7] system is designed to create an
infrastructure for distributed file systems built on top of the now-
ubiquitous foundation of the World-Wide-Web, the HTTP
protocol. With this system, it becomes possible to think of an
entirely user-controlled distributed information sharing
environment with enormous flexibility and potential [6].

Since targeting such a widely deployed Internet-scale
specification makes potential results more applicable to real-world
information-sharing settings, and WebDAV access control
semantics are modeled after Windows NTFS access control
semantics (with some simplifications), we have chosen WebDAV
access control as the basis for our research on usable security. The
results should also have implications for improving the usability
of similar access control systems, such as Windows NTFS access
control.

We make two simplifying assumptions. First we assume the
access control is supported by a good and usable authentication
scheme and this paper will not discuss authentication. Second, we
assume that the security system is in a multi-user environment and
access control of a resource is managed by a combination of a
central administrator and the end-users who have the appropriate
right to perform the management. Although some of our analysis
can be applied to systems that are entirely centrally administered,
we will not concern ourselves with these in this paper. Instead we
focus on end-user control since such systems are becoming more
and more prevalent and necessary.

The rest of the paper is organized as follows. Section 2 picks
WebDAV access control as an example to present our detailed
analysis of the access management workload of the user. To
remove some of the load from the user, Section 3 then introduces
a set of design principles and three levels of models for usable

access management which satisfy these principles. The design and
implementation of an access management system for WebDAV
that embodies the proposed models are described in Section 4.
Section 5 presents a user study on managing access to a WebDAV
repository, demonstrating the usability improvement of the new
design for end-users. Some related work is discussed in Section 6.
Finally Section 7 summarizes the paper and suggests further work.

2. INTENTIONAL ANALYSIS OF
WEBDAV ACCESS CONTROL
The administrator/end-user who wants to control the access to
his/her resources first only has a goal or intention such as who can
perform what operation on what resource in mind. However,
intention is not implementation. Only by a sequence of processes
of checking and analyzing the state of the concerned system will
he/she reach a decision on how to resolve this intention (e.g.,
designing the ACLs). Below, we will take WebDAV access
control which employs a simple ACL model as a case study to
demonstrate that there is a large gap between the intention and the
actual implementation of control for the user. In this paper either
the administrator or the end-user who has the right to manage the
access control is called “user”indistinguishably.

2.1 WebDAV Access Control
The access control list model for WebDAV resources was very
consciously derived from existing file system practice, with slight
adaptations to handle resource properties. The resources are
organized in a filesystem-like hierarchy. Access is divided into
several well-defined privileges (e.g., read, write). Privileges may
be containers of other privileges, in which case they are termed
“aggregate privileges”. Each resource has one ACL. The ACL
contains a set of “access control entries/elements”(ACEs), where
each ACE specifies a principal and a set of privileges that are
either granted or denied to that principal on this resource. An
ACE can be inherited from the ACL of another resource. A
principal may also be a group, where a group is a collection of
other principals, called the members of the group. The groupings
of principals, privileges, and resources by hierarchy, complicate
the access control list model.

Usually WebDAV access control systems provide a user interface
(UI) that allows users to manipulate the ACLs, like the Windows
systems using NTFS do. To manage the access control by
manipulating the ACLs, the user has to learn how an ACL is
evaluated to determine whether or not access will be granted for a
WebDAV request. ACEs are maintained in a particular order, and
are evaluated until all of the permissions required by the current
request have been granted, at which point the ACL evaluation is
terminated and access is granted. If, during ACL evaluation, a
<deny> ACE (matching the current requesting principal) is
encountered for a privilege which has not yet been granted, the
ACL evaluation is terminated and access is denied. Failure to
have all required privileges granted results in access being denied.

The evaluation procedure described above leads to the distinction
between the stated privileges, the explicit privileges granted or
denied to the user in the ACEs, and effective privileges, the actual
privileges that a user will have according to the combination of
the involved ACEs in an ACL. A similar distinction exists in the
Windows NTFS ACL model. The confusion between stated and



effective privileges is one of the main sources of error for end-
users in manipulating the ACL, which was observed in our user
study. Maxion and Reeder [11] have proposed a new interface
called Salmon for setting NTFS file permissions, which mitigates
such human errors by presenting needed information including the
effective permissions in the GUI to the user. However, through
the following analysis, we will show that only providing such
information is not sufficient for end-users.

2.2 Intentional Analysis
So, how can we assess or improve the usability of this ACL
model? Although a GUI ACL editor like the one suggested in [18]
can facilitate manipulating and understanding of the ACLs, and
the WebDAV ACL model is relatively simple, we suggest that
before even considering user interface issues we should determine
whether too much may be asked of the user in terms of sheer
involvement with the process. As stated above, we contend that
the end-user is primarily interested in the output of the ACL
system (e.g., either a success or failure of an access request), and
not in the means by which this output is achieved. Since the
conceptual complexity of a task shouldn’t exceed the user’s
commitment to that task, it becomes necessary to characterize the
complexity and assess how well it matches the user’s expectation.
In this paper, we suggest approaching it from an algorithmic point
of view, since it is easy, straightforward and sufficient for this
kind of tasks. Developing and analyzing the algorithm will reveal
the algorithmic relationship between the goal and configuration
changes. It will help understand where the complexity in the
system lies, characterize and reveal representations/visualization
of state needed to meet a user’s goal.

To assess this complexity and eventually try to match it with the
user’s commitment, we will start our analysis from the goal states
and go backwards to try to determine the minimal changes needed
to achieve the intention. In this paper, we will examine two simple
goal states that the user is likely to be interested in achieving:

G1: Principal X must have privilege Y on object Z.
G2: Principal X must not have privilege Y on object Z.

The principal here may be a set of principals. We focus on these
two intentions since they represent the basic effects all access
control systems should produce through the implementation of
access control. Also all the goal statements discussed in the user
study for Salmon [11] can be generalized into these two
intentions, if the privileges in user intentions match the privileges
used in the system. We describe these goal states as primary user
intentions and analyze the steps necessary to determine what ACL
changes must be made to the current system state to ensure that
the output of the ACL system will produce these results. For
obvious reasons, we call this style of analysis “intentional
analysis”. Note that this is not an analysis of the intentions that
users will have, but of the process that has to be taken based on
the intentions.

The task at hand for the user is then to (1) assess the current state
of the system, (2) decide whether or not the goal is already
fulfilled, and (3) develop a strategy to decide how to minimally
achieve the goal state given the current system state. Since the
WebDAV ACL system is relatively simple, it is likely that we can
develop an algorithm to determine this minimal change set. The
complexity of this algorithm is then a reasonable measure of the

complexity of fulfilling this intention. Therefore in this paper we
also call the analysis based on the algorithm “algorithmic
analysis” and the corresponding task complexity “algorithmic
complexity”.

2.2.1 ACLs in Collaborative Environment
Consider that the state of ACL system is the result of a number of
people with access to shared file-systems collaborating on the
current configuration. If we assume that each of these users is
pursuing a similar goal-oriented approach to making ACL
changes, then the current state should be considered as the result
of a multi-agent collaboration. Therefore, before proceeding to the
full analysis, let us examine the first stage of the reasoning
necessary to deal with the intention G1: “Principal X must have
privilege Y on object Z.”At first glance, it may appear easy to
implement – just adding an ACE that grants the particular
principal X the privilege Y to the top of the ACL of object Z.
Since the order of ACEs determines precedence, this addition will
automatically override any <deny> ACEs that might appear later
in the ACL. If we suppose however, that the <deny> ACE was
added by another user through his or her own intention then we
have a conflict between these two intentions that both users
should be informed of. Detecting and resolving such conflicts may
be important in a collaborative environment. Therefore, rather
than simply adding the grant at the top, we should examine all
ACEs until we find one that specifically grants or denies the
access rights we intend. Some ACL systems, such as the Windows
NTFS ACL system, specify that <deny> ACEs always take
precedence over <grant> ACEs. In this case, adding a <grant>
ACE will never fulfill the intention if conflicting <deny> ACEs
exist in the ACL.

In addition, simply adding an ACE to the top of an ACL without
examining the existing ACEs may introduce redundancy to the
ACL, which may then result in undesired consequences in the
long term. For instance, suppose that the existing ACEs have
determined that principal X already has privilege Y or some sub-
privileges contained in privilege Y, and the user simply adds a
<grant> ACE at the top to fulfill the intention G1. If later on the
user wants to achieve the reversed intention, G2, it is possible that
he/she may just undo the previous action by removing that
<grant> ACE from the ACL. This action will result in an incorrect
or incomplete accomplishment of G2, since the pre-existing ACEs
granting partial rights to G1 are still in the ACL. Exactly such
mistakes were observed in the user study presented in Section 5.

Of course, even if the user does not have direct modification
rights to the ACL of object Z, it may be possible to grant the
access requested. Due to the indirection implied by group
membership, it may be possible to grant the privilege Y by
modifying the membership of an existing group that has this
privilege. Of course, this indirect grant will have side effects (e.g.,
there may be other objects that the group has rights to and the
principal X does not) and the user should at least be notified of
these. In addition, if ACL inheritance is enabled in the system, it
may be possible to grant the privilege Y by modifying the
inherited ACL, if permitted. This may also cause side effects. Let
us consider an example. If user A has the privilege to read a
document object Z, and he wants principal X, who does not have
the read privilege, to read this document. Unfortunately he finds
he does not have the privilege to modify the ACL of Z. If he does



not know the indirect means of granting access described above,
he may just send the document Z to principal X as an email
attachment. From this point on, the access control system is
essentially irrelevant (at least as far as read access is concerned),
since a copy of the file is now “in the wild.”As an alternative to
copying then, side effects may be acceptable.

So, even without considering ACL inheritance (which we will
ignore for the purposes of the flow-chart analysis below), we have
conflicts that should at least be noticed, and potential side effects
from trying to resolve an intention. Clearly resolving even these
simple intentions is not a trivial problem.

2.2.2 Algorithmic Analysis

Figure 1. A possible decision process for determining how to
implement G1: principal X must have privilege Y on object Z

Figure 1 shows a decision process or algorithm that will allow the
user to resolve the intention G1 or be given enough information to
know why he or she was unable to do so. The process begins with
a query Q1 (“Does principal X have access privilege Y on Z?”) to
check if the goal has already been achieved. If it has not been
fully achieved, the user can select all principals X’in X who don’t
have privilege Y on Z for further processing. The user then needs
to check if he has the privilege to modify the ACL of object Z. If
he does, then he examines that ACL in the left branch. In this
branch, if any of the principals in X’ are explicitly denied
privilege Y to object Z, that means there are conflicts between the
current access control intent and whichever previous intents that
caused the denial to be added to the ACL. We will consider the
handling of such conflicts in Section 2.2.4. Even if instead the
user cannot modify the ACL, the process will not end. As shown
in the right branch, the user can check if some group X2 exists
such that X2 has privilege Y to object Z and that he has the
privilege to modify X2. If the answer is “yes”, the user has to
make a decision on whether to add X’to this group, because this
action may cause side effects: as a member of X2, the principals

in X’may have all the privileges group X2 has and lose all the
privileges group X2 is denied. These side effects are produced not
only on object Z but also on other resources in the system.

Figure 2. A possible decision process for determining how to
implement intention G2: principal X must not have privilege Y

on object Z

The flowchart in Figure 1 does not have any loops, but it does
have six branch points. Combining it with the flowchart in Figure
2 (and Figure 3 below) we can enumerate all of the branch points:

Q1: Does principal X have privilege Y on Z?
Q2: Do I have the right to modify the ACL of object Z?
Q3: Are any of the principals in X’explicitly denied privilege Y

to object Z?
Q3.1: Are those principals denied privilege Y to object Z

individually or via some group to which they belong?
Q4: Does group X2 exist such that X2 has privilege Y to object

Z and I have the privilege to modify group X2?
Q5: Do I have the privilege to create a new group?
Q6: Are those principals granted privilege Y to object Z

individually or via some group to which they belong?
Q7: Does group X3 exist such that X3 is denied privilege Y to

object Z and I have the privilege to modify group X3?

Note that these decision points all involve queries of the system
state. If the user does not deeply understand the ACL evaluation
model, there is no reason to suppose that he or she would be able
to easily resolve these questions. Frankly, it is unlikely that most
users would even know to ask many of them.

For example, consider the query Q1 “Does principal X have
privilege Y on Z?”Answering this query involves evaluating the
effective privileges for principal X. As described above, a
principal’s effective privileges are computed according to a
formula that sums the principal’s explicit privileges granted by
some ACEs (directly or indirectly via group) and have not been
denied by preceding ACEs in the ACL. Thus, users managing the



access control are forced to deal with the low-level ACEs, their
ordering in an ACL, and the formulas for resolving overlapping
ACEs.

In this analysis of the decision process we did not consider
administrative privileges that can change the ACL (e.g., the write-
acl privilege in the WebDAV ACL model or change permissions
permission in the Windows NTFS ACL model). Any user who has
the write-acl privilege can modify the ACL to grant anyone
(including him- or herself) any privilege. Taking this into account,
any “deny”intention must resolve another intention, “principal X
must not have the write-acl privilege on object Z”, before
resolving the intention G2; otherwise principal X may still grant
him- or herself privilege Y at any time by modifying the ACL.

It should be clear from examining these two flowcharts that the
process of deciding how to implement a particular intention is
neither simple in terms of algorithmic complexity we defined
above nor in terms of comprehension and examination of the
system state. A user must know what questions to ask of the ACL
system and in what order, and then may be forced to make some
difficult decisions to achieve the desired goal. Thus, the task of
formulating changes to an ACL to achieve even these simple
intentions is far from trivial.

Further, in addition to the difficulties the user may have in
resolving the intention, the lack of system support for answering
these queries (e.g., an interface providing ready access to needed
information), or of user knowledge for properly asking and
resolving these queries, may lead to user errors. There are
potential risks or errors associated with each query. Errors can be
classified into two types: errors of commission due to the user
establishing a wrong answer to a query; and errors of omission
due to the user failing to make a query. For example, let us
consider Q1. If the user gets the wrong answer “yes”to Q1 due to
either lack of information or mistaken evaluation, he may falsely
conclude that the intention is achieved and that nothing needs to
be done (error of commission). If the user does not know to ask
G4, he may falsely conclude that the intention cannot be achieved
in any way (error of omission). Thus, tools designed to reduce the
workload of users should not only make access control systems
easier to use but also reduce the occurrence of these user errors.

The terms “Gulf of Evaluation” and “Gulf of Execution”
introduced by Norman [12] are a good reference in the discussion
of security usability. In conclusion, the structure of the algorithm
described above represents the complexity of the “gulf of
execution” for any interface to directly manipulate ACLs. The
queries derived from the decision points represent a minimal set
of states to be presented by an interface to cover the “gulf of
evaluation”.

Finally, this analysis reveals three features of the problem that will
be important in designing systems to interact with this model: side
effects, conflicts and user modeling decisions.

2.2.3 Side Effects
Any time a simple intention “principal X must have privilege Y
on object Z”is resolved by the addition of principal X to some
group G, it is likely that this action will have side effects.
Suddenly, principal X may be granted (or denied) other privileges
that have been associated with group G. At a minimum, the user
should be notified of these side effects. Similarly, side effects may

arise if the intention is resolved by the removal of principal X
from some group G. In addition, if ACL inheritance is enabled
and the intention G1 is resolved by modifying the inherited ACL,
side effects may arise on any resource that inherits from the
modified ACL.

There are, however, two other possible complications. It is
possible that one of these side effects changes the results of a
query in one of the previous branch points in the flowchart. In this
case, we do have a loop and must go back and re-examine these
points. The other possibility is that there may be a number of
different groups with privilege Y on object Z that the user could
add principal X to. In that case, we must consider that there are
some decision points with multiple branches leading out of them,
and we must allow the user to decide which of these would be
preferable. We call these decision points modeling decisions.

2.2.4 Conflicts
Of course, there is no reason to have any sort of access control
system in a single-user environment, so we should not conclude
our analysis without due consideration of other users. Let us
assume that all of the users of the WebDAV repository are basing
their ACL implementations on similar intentional processes. As
we pointed out above, it can be important to detect situations in
which it is likely that two users’intentions are in conflict (i.e., one
user acts to ensure a privilege Y for principal X on object Z and
another user acts to deny that same privilege for principal X). In
addition, because of the privilege hierarchy, two users’intentions
may be in partial conflict, in which case the privileges in these
two intentions do not exactly match but overlap.

What sort of consequences should there be when such a conflict is
detected? We could adopt a “most-recent-change-wins”policy, in
which case there is an obligation to at least inform the source of
the conflicting ACE that his or her intention has been superseded.
An alternative would be to disallow such supersessions and
instead initiate a request to the source of the first entry that they
retract their intention or modify it to allow an exception. This step
could be augmented by an automatic process to suggest
alternatives for resolving the conflict, a process that would likely
have to be analyzed as we have done above.

Note that there are two kinds of conflict: the conflict between the
ACEs and the conflict between the user intentions. Users care
about the conflicts between intentions. However, even when two
intentions do not conflict, it is possible that the resulting ACEs
are in conflict, if the implementation of the previous intention
causes some side-effects which contradict with the latter intention.
We will not explore the issue here, but leave it for future research.

2.2.5 Modeling Decisions
The above example exposed one kind of modeling decision, a
choice of which of a set of possible groups the user might expand
or contract membership to in order to resolve an intention. It is
likely that a combination of the “identities”of the groups and the
side effects resulting from this change will determine which group
the user will choose. A user may want to know what the options
are to make such a decision, or simply choose the option with the
fewest side effects. It may not be unreasonable to consider this
difference to be subject to a user preference.

Another kind of modeling decision may arise in the case where



the user identifies a set of principals in his initial intention. In that
case, we have the modeling decisions shown in Figure 3. We may
be able to simply add individual grants directly, create a new
group for those principals and add a grant to that group, or even
add all of the principals to an existing group with the desired
privilege. Of course, this last choice may cause side effects.

Figure 3. Example of a user's modeling decisions for G1

2.3 Discussions

2.3.1 Other Intentions
Consider also the “special” reflexive intention “I should have
privilege Y on object Z”. At first glance, this would seem to be
just a variation on the intention G1; however it has very different
implications. First, if it is possible for me to grant myself
privileges that I didn’t previously have, then it could certainly be
argued that the system state is insecure, since no user should be
able to grant him- or herself previously unavailable privileges in a
secure system. But with the mix of direct and indirect privilege
granting that comes from the addition of groups, it may be
difficult to maintain this level of security throughout. In addition,
it is unavoidable in the Windows NTFS file system that I can
grant myself any privilege if I am the owner, because the owner of
a file or folder in the Windows NTFS system can always change
permissions on it, regardless of existing permissions protecting
the file or folder.

Even in a secure system state it may be useful to submit this
intention, since a conflict identified by it will point to the reason
why the user has been denied access [9]. A subsequent query
could then be made: “Who can grant me access?”Of course, for
the intentions discussed previously, limited access to the ACL
state of the system was not a problem. For example, if the user
cannot examine the membership or permissions of a group, then it
is irrelevant to the intention of using that group to grant a
privilege, since the user will not be able to modify its membership
anyway. With the “Who can grant me access?”query, however, it
may be necessary to be able to examine such states. In this case, a
list of people to ask would not necessarily violate the information
hiding that presumably has been done deliberately if it is only
their identity that is being revealed. In fact, if the intentions are
transferable, then the user could effectively request access by
passing on a description of his intention to someone capable of
granting it and then allow them to decide whether and how to do
so.

2.3.2 More Complex Cases

To this point, we have considered only simple intentions. Even for
these simple cases, the set of queries that a user needs and the
system should support (Q1-Q7) are neither simple nor small in
number. They illustrate that even for simple intentions, the
cognitive workload of users in constructing sequential and
conditional queries and interacting with the system for modeling
decisions is relatively heavy compared to the simplicity of the
intentions. Consider complex intentions such as the following:
“All the members in the groups to which my wife or I belongs
except Bob have privilege Y on object Z.”Clearly it is not an easy
task for the user to transfer this intention to actual access control
list settings. In the worst case, there may be ambiguities in a
user’s intentions. The system may need to detect such ambiguities
and provide feedback to help the user make his or her intentions
clear.

Some access control systems may group the privileges in a
privilege hierarchy. For example, the privilege read may contain a
sub-privilege read-acl that is the privilege to read the ACL.
Surely it will complicate the decision process of the user to fulfill
his/her goals, in either assessing the system state or planning the
implementation.

Further, the privileges we have discussed so far are low-level
privileges that are implementation-specific and can be set directly
in the ACEs. However, the user, especially the end-user, may
often have high-level privileges in mind that are not necessarily
the same as the low-level privileges. In this case, the user has to
understand the semantics of these low-level privileges. He or she
then has to translate the high-level privileges to these low-level
privileges before he or she can conduct a decision process such as
the one described above for determining how to implement his or
her intention. Therefore, the user has to construct a mapping
between the high-level privileges and the actual low-level
privileges which can be applied in the system. It is clear that such
translations increase the user’s cognitive workload further; a
system that can perform these translations automatically or semi-
automatically will be more usable.

The WebDAV access control specification indicates that the
server implementation may support some ACL restrictions. For
example, the “deny-before-grant”restriction specifies that all non-
inherited <deny> ACEs must precede all non-inherited <grant>
ACEs. Actually, this is a restriction employed by the Windows
NTFS. The “grant-only”restriction indicates that ACEs with deny
clauses are not allowed. In this case, if the user wants to deny
principal X the privilege Y, and principal X holds the privilege Y
by both an ACE granting him this privilege and an ACE granting
a group of which he is a member this privilege, just removing the
former will not fulfill his intention. In addition, the WebDAV
access control specification also introduces some ACL
preconditions. For instance, the “no-inherited-ace-conflict”
specifies that the ACEs to be set must not conflict with the
inherited ACEs on a resource. If such ACL restrictions or
preconditions must be enforced in the access control systems
concerned, the intentional analysis will be more complex.

2.3.3 Beyond the Algorithmic Analysis
In the algorithmic analysis above, we deliberately chose simple
cases. Most other access control systems (e.g., policy-based,
RBAC-based) are at least as complicated, and thus likely more
conceptually complex and potentially “unusable”. The first



finding we can naturally derive from the above analysis is that any
user interface that lets users manipulate the embedded access
control mechanism should provide enough and needed
information to users so that they can fulfill their tasks quickly and
accurately. For example, this analysis has exposed the views of
system state necessary to effectively manipulate the ACL in terms
of the queries Q1-Q7. This claim is supported by the work of
Maxion and Reeder [11]. Their Salmon interface can provide
answers to queries Q1, Q2, Q3, Q6, partial answers to Q4 and Q7,
but no answer to Q5. One consequence of the analysis would thus
be to refine the Salmon interface to better support the evaluation
of Q4, Q5 and Q7.

However, we suggest that manipulating the ACL directly is not
the right goal for a user interface design. Just visibility (i.e., good
feedback) may not be going to work. Consider the complexity
revealed by the above analysis. The factors, including the ordering
of ACEs and its restrictions (e.g., deny-before-grant, no-inherited-
ace-conflict), indirections by group membership and ACL
inheritance, the privilege hierarchy, and administrative privileges,
all complicate the decision processes for end-users. For an
interface representing the interactions of manipulating the ACL, it
is necessary to expose such complexity to end-users. The
procedures and reasoning that are necessary to determine how to
manipulate the ACL for fulfilling the goals are left to the users. If
the system does not help/guide end-users to fulfill their goals
according to the above analysis, end-users have to learn and retain
the procedures by themselves while they are only interested in the
system effects or results - effective privileges.

Therefore, we suggest that the next step is to consider the design
of systems that limit the need for the user to be exposed to such
complexity. The above analysis has shown that the translation
between the ACL and user goals is just algorithmic and
predictable. Therefore, we may design systems that can support
the expression of user intentions and then resolve these intentions
on the user’s behalf, or at least provide significant offloading of
the cognitive workload, which produces usable interfaces for
these access control systems. Such systems present a higher level
of abstraction and can be regarded as an incremental compiler that
compiles down the high-level language (i.e., goals) to the low-
level assembly language (i.e., ACL implementation). More
specifically, we need support of visibility and manipulation in
terms of effective access control as well as reasoning support to
deal with indirection issues and limited manipulation. In this
sense, the Salmon interface [11] can be taken as a front end of
such systems while the input is changed to effective permissions
instead of stated permissions. We will refer to such systems as
Intentional Access Management systems and discuss them in the
next section.

3. INTENTIONAL ACCESS
MANAGEMENT

3.1 Design Principles
It must be emphasized that users of privacy/security systems view
them as means to an end and not an end in themselves [15]. The
systems are always peripheral to a user’s primary task. Therefore,
users of security management systems have little or no interest in
solving “puzzles”to be able to use them. The analysis in Section 2
exposed some of these “puzzles”. Reluctance to solve them is

especially true of end-users, since they usually have limited
expertise and interest in security systems compared to
administrators. In this context we wish to extend the design
principles of Clarity and Visibility from Yee [17] and recast them
into a form specific to the analysis we have just completed. In
general, for systems that involve risky or critical decisions (such
as security systems), we claim that:

User decisions should be made/requested in an environment
where

1. The user has access to essential information needed
to make the decision reliably; and

2. The system should be responsible for predicting and
presenting such information when it can.

The translation of these principles into a system that takes user
intentions as input and attempts to resolve them in a way that
formulates access control rules that fulfill these intentions will
result in what we refer to as an Intentional Access Management
system.

We define an intentional access management system (IAM) as any
system in which the following are true:

1. The user initiates interaction with the system by
expressing an intention in terms of an output constraint
on the access control system;

2. The system translates these intentions into
implementation;

3. The system follows Yee’s principles of clarity and
visibility in informing the user of the consequences of
actions not directly implied by their intentions; and

4. The system informs the user of modeling variations as
well as detected ambiguities and conflicts in intentions.

We identify three possible levels of support for intentional access
management: the wizard model, the full IAM model, and the
multi-backend IAM model.

3.2 The IAM Wizard
One of the simplest ways to achieve the IAM model is to allow a
user to express an intention and then use a “wizard”to walk the
user through the process of creating an implementation of that
requirement. This approach is similar to the various wizards used
to allow some end-user system management in Windows
environments. Wizards essentially walk a user through the
decision process and request him or her to make choices when
necessary.

Such a wizard for access management can be implemented by
simply following the flowchart for implementing a goal and
changing the “wizard window”whenever a modeling decision that
refines the goal must be made. This window should at minimum
provide access to some representation of the side effects of the
modeling decisions (visibility), and some description of the
conflicts found as well as possible ways to resolve them. It must
also make clear what the actions taken were and what the side
effects of these actions are (clarity).

In addition, the interruption inherent in the wizard model may be
mitigated by adopting the Surprise-Explain-Reward strategy [16].

One problem with the pure wizard approach, however, is in
detecting and resolving conflicts. This model assumes that



intentions are expressed incrementally and that incremental
changes are made to the system state to fulfill these intentions.
Ultimately, the current system state is derived from a series of
intentions expressed by a variety of users. Without some record of
who made a change and what their intention was in doing so, it
becomes very difficult for the system to do more than just notice
that conflicts exist (e.g., between an existing grant and an intent to
deny a privilege). If we wish to be able to actually resolve these
conflicts, we need a system that maintains a record of intentions
on a per-user basis and relates these to the current system state.

3.3 Full IAM

Figure 4. Full intentional access management (IAM) model.

Figure 4 presents a model that can deal with conflicts
intelligently. It shows a full intentional access management system
that, in addition to the requirements for basic IAM, includes:

1. the maintenance of intentions for each user;
2. the ability to retract previous intentions (like “undo”in direct

manipulation);
3. the maintenance of connections between intentions and

implementation actions; and
4. the management of conflicts by initiating user interactions to

resolve conflicts.

As depicted in Figure 4, in an intention management system built
upon this model, users can present their intentions based on their
own conceptual access control model. The Constraint Manager
module will then interpret these intentions and transfer them into
appropriate access control implementation.

The Constraint Manager deals with constraint satisfaction and
conflict resolution. Some set of intentions/goals {G} exists, and
an access control system is configured to fulfill them. Constraint
satisfaction creates and maintains the dependency D(S, G) on an
access control statement S that helps to achieve an intention/goal
G (i.e., is produced as a result of introducing intention/goal G).

A conflict occurs when a new intention/goal G’is introduced that
contradicts an existing intention/goal G. If G’and G are both
generated by the same user, then G’has priority over G, but the
user should be notified. If user U’introduced G’and user U
introduced G, then we have an inter-user conflict and need some
strategy of notification and conflict resolution. Note that here we
do not introduce any new complexity to access control systems,
but expose the inherent complexity of the systems in the multi-
user environment.

3.4 Multi-Backend IAM
Finally, it becomes feasible to expand this model to one in which
there may be a variety of different implementation models
available as the backend, depending on the storage repository
being used. If done correctly, the intentional model may be able
to present the user with a unified conceptual model and interface
independent of the means being used to implement the access
control. Thus through the multi-backend IAM, end-users can
control multiple systems embedding various access control
mechanisms in a unified way without learning them separately. At
the same time administrators can still manage individual systems
through their traditional way. Of course this will raise a
challenging issue of mapping the administrators’administrative
actions to their intentions, if we want to detect and resolve the
conflicts between the intentions of administrators and end-users.

Figure 5. Multi-Backend IAM model.

To achieve such security interoperability, a Consensus Model
needs to be constructed as a mediator between the Constraint
Manager and the security backend implementations, as shown in
Figure 5. The consensus model will abstract access control out of
the concrete implementations such as simple ACL, RBAC-based,
and/or policy-based systems. In this way, a general constraint
manager can be maintained no matter what access control
mechanism is implemented in the backend.

Validation of the proposed intentional access management models
is a concern. However, we can confidently claim that the proposed
models can be implemented, because the basic intentions G1
(“Principal X must have privilege Y on object Z”) and G2
(“Principal X must not have privilege Y on object Z”) represent
the semantics embedded in the access matrix [10] lying at the
heart of most access control models. In essence then, the goal
statements are simply modeling the same access matrix as
traditional access control systems, except as constraints on the
effective privileges. Absent conflicts then (which we argued
should primarily be resolved outside the access control system),
both IAM and traditional access control are constraining the same
resource. Therefore, if an access control system is sufficiently
powerful to describe any potential access matrix (and the
intentional model clearly is), the problem of deriving an access
control implementation from a set of intentional constraints is
simply algorithmic

4. IMPLEMENTATION
To demonstrate the applicability and inherent usability of the
intentional access management designs, we have applied the
proposed principles and models to an access management



prototype for WebDAV. Any server supporting WebDAV may be
used for this system; we chose Slide server [8]. As for the client,
we chose DAV Explorer [5], whose user interface is similar in
look and functionality to the Explorer program in Windows. In
the current implementation, an IAM wizard was built into the
DAV Explorer. It supports basic intentions of who must / must
not have what privileges on the object.

We based the program flow of the IAM wizard on the decision
processes derived from the intentional analysis described in
Section 2, but all reasoning work is now performed by the IAM
instead of the user. To fulfill the user’s intention, the system state
will be changed by adding/removing/modifying ACEs or adding/
removing principals into/from groups, automatically or according
to the modeling decision the user chooses. Three main dialog
windows (DialogA, DialogB, DialogC) were designed to
accomplish this flow.

DialogA (Figure 6) is split into two panes, upper and lower. The
upper pane lets the user specify his or her intention regarding who
must/must not have what privilege. Once a principal is selected,
the pane also shows the privileges that principal currently has, and
the groups that principal is a member of. In addition, the lower
pane in the dialog window shows the current access control status
by listing the effective privileges for each principal. Such
information helps the user to construct a clear and correct view of
the system state. In addition, tool tips and labels are extensively
used to present explanations when the mouse pauses over preset
UI components.

The content of DialogB may change according to different
branches in the program flow. When the system detects that the
intention conflicts with existing effective ACEs (those not
preceded by relevant ACEs), this dialog will present all the
conflicting ACEs to the user with the information of who set those
ACEs. If the user has the privilege to modify the ACL, it will also
provide possible solutions (modeling decisions) for the user to
resolve the conflicts, as shown in Figure 7. Of course, some
solutions may have side effects. The conflicting ACE will be
highlighted if the user chooses the solution that has side effects,
and then the user can click to check the side effects. By default the
system will choose the solution without side effects. The user can
always click the “I do NOT want any side effects”button to reset
to the default solution.

If the user does not have the privilege to modify the ACL, the
IAM system will automatically search for alternatives (e.g.,
adding the specified principal to some group) and present them in
DialogB for the user to choose. Also, the user can check the side
effects associated with each solution.

DialogC is the final window showing the task result. If the
intention cannot be fulfilled, it will display error information and
explanations. If the intention is successfully fulfilled, it will list all
the actions the system has taken, in order. The user can also check
current system state to verify the fulfillment.

5. USER STUDY
To evaluate the usability of the proposed IAM system, a carefully
designed laboratory user study was conducted. Two modules for
managing WebDAV access control were compared: the simple
ACL editor like module in the original DAV Explorer (referred to
as ACL Editor in the study), and the IAM wizard, a new module
for managing access, implemented based on the IAM models. The
current user study is preliminary. We do not claim that the IAM is
the best approach to making access control usable for end-users.
The goal of this study is to demonstrate that the proposed design
is feasible and usable for end-users while it doesn’t upset user
expectations or cause confusion. In other words, the study was
designed to expose failures in the conceptual model of the user
interaction rather than to test specific claims of its efficiency.

5.1 Study Design

5.1.1 Participants
Ten people participated in the study. Participants were recruited
randomly and had various backgrounds from business to
engineering. All used computers at least a few times a week. Eight
reported having some experience setting file permissions on
Windows or another operating system, while two reported having
no experience setting file permissions whatsoever. Two reported
they were averagely familiar with the ACL and how it is evaluated
prior to the study, and five reported knowing a little about the
ACL, while three did not know the ACL at all. None knew how
ACLs are implemented in WebDAV before the study.

5.1.2 Task Descriptions

Figure 6. A screenshot of DialogA obtaining the intention from
the user and showing the current access control state

Figure 7. A screenshot of DialogB showing the conflicts and
modeling decisions



To simulate real access management conditions, a hypothetical
scenario was designed in which the participants at different sites
collaborated to jointly author documents which were stored on a
WebDAV server, and had to restrict access to these shared files.
The hypothetical collaborative environment was created and
populated with individual users, groups, files, and folders on the
WebDAV server. The environment included 8 individual users,
plus one user named John who represented the participant
her/himself. The environment also includes 7 groups. No group
contained another group as a member.

Two sets of tasks were given to each participant. These two sets
were identical except that they targeted different resources. Each
set of tasks included one training task which gave participants
experience with the module used, and four other tasks (Task1,
Task2, Task3, and Task4). Due to the page limitation, we do not
list the detailed task statements here.

The training task simply required the participant to add an ACE
granting users/Jack the privilege write-content, and to find that all
users had had the privilege to read the file.

Task1 was introduced to check if the participant could determine
that the task requirements were already fulfilled and no action was
needed.

The task statement for Task2 was identical to that for Task3
except for the names of specific files and users. They asked the
participant to configure the system so that the specific user can
read but cannot change the content of one file. However, the tasks
differed in the way they were initialized. In both of these tasks,
there was one group that was already on the ACL for the file, and
the target user was a member of that group. However, in Task2,
the user users/test had only inherited the write-content (the
privilege to change file content) privilege from group ProjectA,
while in Task3, the user users/projector had inherited the write
privilege from group ProjectB which contained both write-content
and write-acl (the privilege to modify the ACL) privileges.

The simple solution to Task2 was to add an ACE denying
users/test the write-content privilege; he already had the privilege
to read the file content. However, this simple solution could not
work for Task3, since users/projector had inherited the write-acl
privilege from group ProjectB. If users/projector was denied the
write-content privilege, but not explicitly denied the write-acl
privilege, he would have been able to restore his write-content
privilege. The task statement presented to users did not mention
this nuance; it was left to users to decide that users/projector’s
write-acl privilege had to be removed.

Note that Task2 and Task3 are similar to the Wesley and Jack
tasks in Maxion and Reeder’s study [11] on the Windows XP File
Permissions interface and their Salmon interface.

The purpose of Task4 was to check if participants could find an
alternative way to grant privileges (adding user users/john2 to
group roles/ProjectC) when they did not have the privilege to
modify the ACL.

In order to collect their feedback on the IAM wizard, a short
interview with each participant was performed after the
participant finished all the tasks.

5.1.3 Procedure

Participants were asked to use the ACL Editor to fulfill one of the
two sets of access management tasks and use the IAM wizard to
fulfill the other set of tasks. For Task1, Task2, and Task3, eight
used the ACL Editor first and then the IAM wizard, and two used
them in the reversed order. For Task4, they all used the ACL
Editor first, and then the IAM wizard. Before participants used the
ACL Editor to fulfill tasks, they were required to learn how the
ACL is evaluated. Participants were told that they could “think
aloud”throughout the course of the experiment. Participants were
shown how to view WebDAV system users, groups, group
memberships, and the owner of a resource. After each task was
completed, participants were asked to rate their confidence on a 1-
7 scale (7: very confident) that the task had been completed
correctly.

5.2 Results
This section presents the results of the study, including speed,
accuracy, user confidence and satisfaction for each of the two
modules under scrutiny. The results show that the IAM wizard
performed better than the ACL Editor did.

5.2.1 Speed
For accomplishing the tasks by using the ACL Editor, all
participants had to first learn the ACL and how it is evaluated.
The average time for them to understand the ACL evaluation is
about 8 minutes. On the contrary, the two participants who
fulfilled the tasks by using the IAM wizard first spent no time
learning the ACL evaluation before the tasks but still got 100%
accurate task completion.

0
20

40
60

80
100
120

140
160

180
200

Task1 Task2 Task3 Task4

T
im

e
(s

ec
o

n
d

s)

All ACL Editor users

All IAM users

Successful ACL Editor
users only

Successful IAM users
only

Figure 8. Average time to complete Task1 - Task4

Figure 8 illustrates the average task completion times for each of
the two modules and four tasks. The solid bars show times for all
participants, whether they succeeded or failed in the task; the
striped bars show times only for participants who completed the
tasks accurately. For using the IAM wizard, since all tasks were
successful, the average times for all and for successful participants
were the same for each task. Note that the difference between
Task4’s average completion times for all participants and only
successful participants using the ACL Editor is large. For this
task, 9 of 10 participants using the ACL Editor thought they could
not complete the task and gave up while one went on to check the
“Group Manager”we developed for the DAV Explorer to manage
group membership.

These results show that those completed the tasks successfully
took less time using the IAM wizard than using the ACL Editor.
For Task2 and Task3, the difference between times for the two



modules is not statistically significant (one-sided Welch’s t-test
for Task2: t = 0.3511, df = 7, p = 0.3679; for Task3: t = 1.6482, df
= 2, p = 0.1205). However, for Task1, successful users using the
IAM wizard spent, on average, significantly less time than the
successful users using the ACL Editor did. A one-sided Welch’s t-
test showed this difference to be statistically significant at the 0.05
level (t = 3.3789, df = 18, p =0.0017). This is because many users
using the ACL Editor still added new ACEs into the ACL
although the task requirements had already been fulfilled, while
the IAM wizard directly told them the fact and then no action was
needed. For Task4, the time difference is also significant. The
only one who successfully completed this task using the ACL
Editor took 187 seconds (he first used the ACL Editor and then
the Group Manager), while the users using the IAM wizard took
less time (Mean = 91.6, Standard Deviation (SD) = 31.3).

5.2.2 Accuracy
Table 1 shows the percentages of participants who successfully
(accurately) completed the tasks by using the ACL Editor and the
IAM wizard. The IAM wizard outperformed the ACL Editor on
all tasks. Especially, for Task4, using the ACL Editor, only 1
participant who remembered his prior experience of adding users
to a group to get privileges completed the task successfully, while
all participants completed the task successfully by using the IAM
wizard.

Table 1. Percent of accurate completions for the four tasks by
using the ACL Editor and the IAM wizard

Using ACL Editor (%) Using IAM wizard (%)
Task1 100 100
Task2 70 100
Task3 30 100
Task4 10 100

Note that by using the IAM wizard, more users correctly
completed the tasks while taking less time on average, suggesting
that IAM’s accuracy gains were not due simply to a speed-
accuracy tradeoff.

As indicated above, Task2 and Task3 are similar to the Wesley
and Jack tasks in Maxion and Reeder’s study [11]. In that study,
their proposed Salmon interface which only provided needed
information to the user for setting file permissions recorded 83%
and 100% accurate task completions for the Jack and Wesley
tasks, respectively. The IAM wizard with both 100% accurate task
completions demonstrates superior performance.

Actually, these results are natural and predictable, because the
IAM is designed to directly accommodate user goals. It eliminates
human errors in the goal implementation. In such a system, the
only source of error is in expressing the intention/goal. For
example, it is possible that the representation of some complex
intentions in the system does not match the user’s mental model,
and this may lead to confusion and failure to express such
intentions to the system. Therefore we need to study the users’
real security intentions and represent them more accurately in the
system. One useful work is to model user privacy needs for
information sharing.

5.2.3 User Confidence and Satisfaction
The participants were asked to state their confidence in their
work. Of course, they gave the highest confidence rating (i.e., 7)

to all tasks when using the IAM wizard, because the system
accomplished most work for them, and provided enough feedback
so that they can check the results in the end. When using the ACL
Editor, as shown in Table 2, their confidence was lower.

Table 2. Average confidence ratings for the four tasks by using
the ACL Editor and the IAM wizard

Using ACL Editor
(Mean, SD)

Using IAM wizard
(Mean, SD)

Task1 6.9, 0.3 7, 0
Task2 6.4, 0.7 7, 0
Task3 6.3, 0.8 7, 0
Task4 1.6, 1.8 7, 0

Note the mismatch between the high confidence and poor
performance on Task 2 and Task 3 when using the ACL Editor.
This is a recipe for security failures and frustration. Users think
that they have correctly configured the security system to protect
their resources, but they are mistaken. Moreover, it is unlikely that
this mistake would be noticed until a security breach demonstrates
that the system is misconfigured (assuming that they are made
aware of the breach). Since the IAM design addresses both the
gulf of execution and the gulf of evaluation, the user’s confidence
is a good match to goal success even though the system hides
many of the details of the mechanism. In essence, because the
system is careful to show the user the effects of their actions, the
“magical”connection between the intention and the mechanism
seems natural and predictable.

In the interview, all participants expressed their preference of the
IAM wizard over the ACL Editor. Most of them explicitly
indicated that this level of expressing goals seemed natural to
them, and the hiding of the internal security mechanism (i.e., the
ACL) did not confuse them, or upset their expectations. The most
common feedback was that the new module was straightforward
for accomplishing the tasks.

6. RELATED WORK
There are few studies on usability of access control mechanisms.
The Adage project [19], the successor of MAP project [18], may
be the largest effort to date to employ usability design techniques
in developing an authorization service for distributed application.
However, MAP and Adage were intended for use by professional
system administrators who already possess a high level of
expertise, and as such they did not address the problems posed in
making security effectively usable for a more general population
of end-users.

The work most directly related to the topic of this paper is the
study performed by Maxion and Reeder on the Windows NTFS
file permissions model [11]. As described in Section 2, their new
interface Salmon can be seen as an interface that provides the user
direct manipulation on the internal access control mechanism (i.e.,
the ACL) with useful feedback (e.g., displaying effective
permissions). Salmon was designed to provide an accurate, clear
and salient external representation of the information needed to
achieve the user’s primary goal. However, the user still has to
formulate subgoals from his or her primary goal according to the
information provided by Salmon and determine by him- or herself
how to implement these subgoals. Considering the low interest
and expertise of end-users, it is usually not an easy task for them,
even with useful feedback provided by the interface.



Another recent related work is the study by Brostoff et al. [3] on
improving the usability of their PERMIS system for writing
authorization policies for e-Scientists, their target end-users.
Through user trials, they identified two fundamental problems:
lack of understanding what the policy components are and lack of
understanding of the underlying policy paradigm. To address
these problems, they revised the user interface (UI) labels to better
describe access policy components, and used instructional text in
the GUI and UI behaviour to shape users’models of the policy
paradigm. However, like Salmon, as they indicated, thorny
problems still remain - users have to work out how to do what
they now know needs doing. Our IAM models are designed to
tackle such problems, and their work can be a good complement.

Some researchers have suggested a range of design principles for
building systems that are both secure and usable [2] [17] [18]. For
example, Yee [17] summarized ten design principles for secure
interaction design which include Clarity, Visibility and
Expressiveness. However, we argue that although these principles
are desirable in designing security systems, their application may
not guarantee the usability of the designed systems. Two problems
exist: (1) a system so designed may be perfectly usable for one
group of users and opaque and unusable for a different group
(e.g., system administrators vs. end-users), and (2) these
guidelines do nothing to address the gap in reasoning that could
allow a user to determine what changes need to be made to a
system’s state to achieve a desired goal.

7. CONCLUSION
Through a thorough analysis of the WebDAV access control list
model, we find that the cognitive workload required for even
simple access management tasks is too heavy for end-users. To
alleviate the conceptual complexity and make the management
task easier for end-users, we introduce the concept of intentional
access management (IAM). A set of design principles and three
models for supporting the IAM are proposed. We have
implemented an IAM wizard to manage ACLs in WebDAV, and
performed a usability study to confirm that our approach is
effective and usable. This research is only in its early stage. To
demonstrate the high potential of IAM for usable access control,
the full IAM and multi-backend IAM models need to be
developed. In addition to the resolution of conflicts, and the
presentation and exploration of side effects, such future IAM
systems should support interactions with multiple systems and
with system administrative actions.

8. REFERENCES
[1] Adams, A. and Sasse, M. A. Users are not the enemy. Comm.

ACM, vol. 42, no. 12, 1999, 41-46.

[2] Balfanz, D., Durfee, G., Smetters, D.K., and Grinter, R.E. In
search of usable security: five lessons from the field. IEEE
Security & Privacy Magazine, vol. 2, no. 5, 2004, 19-24.

[3] Brostoff, S., Sasse, M. A., Chadwick, D., Cunningham, J.,
Mbanaso, U., and Otenko, S. R-What? Development of a
role-based access control (RBAC) policy-writing tool for e-
scientists. Software: Practice and Experience, vol. 35, no. 9,
July 2005, 835-856.

[4] Clemm, G., Reschke, J., Sedlar, E., and Whitehead, J. Web
Distributed Authoring and Versioning (WebDAV) Access
Control Protocol. RFC 3744. May 2004.
http://www.ietf.org/rfc/rfc3744.txt.

[5] DAV Explorer. http://www.ics.uci.edu/~webdav/

[6] Dussault, L. WebDAV benefits for the enterprise and its
denizens. DM Direct Newsletter, Dmreview.com, June 27,
2003.
http://www.dmreview.com/article_sub.cfm?articleID=6971

[7] Goland, Y., Whitehead, E., Faizi, A., Carter, S.R., and
Jensen, D. HTTP Extensions for Distributed Authoring --
WEBDAV. RFC 2518. Feb. 1999.
http://www.ietf.org/rfc/rfc2518.txt.

[8] Jakarta Slide project. http://jakarta.apache.org/slide/

[9] Kapadia, A., Sampemane, G., and Campbell, R. Know why
your access was denied: regulating feedback for usable
security. In Proceedings of the 11th ACM conference on
Computers and Communications Security (CCS),
Washington DC, Oct 25-29 2004.

[10] Lampson, B. Protection. In Proceedings of the Fifth
Princeton Symposium on Information Sciences and Systems,
Princeton University, March 1971, 437-443.

[11] Maxion, R.A. and Reeder, R.W. Improving user-interface
dependability through mitigation of human error.
International Journal of Human-Computer Studies, vol. 63,
2005, 23-50.

[12] Norman, D. The Design of Everyday Things. Basic Books,
New York, 2002.

[13] Sandhu, R.S., Coyne, E.J., Feinstein, H.L., and Youman,
C.E. Role-based access control models. IEEE Computer, vol.
29, no. 2, February 1996, 38-47.

[14] Sheehan, K. Towards a typology of Internet users and online
privacy concerns. The Information Society, vol. 18, 2002,
21-23.

[15] Whitten, A. and Tygar, J.D. Why Johnny can’t encrypt: a
usability evaluation of PGP 5.0. In Proceedings of 8th
Usenix Security Symposium, Usenix Assoc., 1999, 169-184.

[16] Wilson, A., Burnett, M., Beckwith, L., Granatir, O., Casburn,
L., Cook, C., Durham, M., and Rothermel, G. Harnessing
curiosity to increase correctness in end-user programming. In
Proceedings of ACM Conference on Human Factors in
Computing Systems, Ft. Lauderdale, FL, April 2003.

[17] Yee, K.-P. User interaction design for secure systems. In
Proceedings of 4th International Conference on Information
and Communications Security, Deng R. et al., eds., LNCS
2513 Springer, 2002, 278-290; http://zesty.ca/sid.

[18] Zurko, M. E. and Simon, R. T. User-centered security. In
Proceedings of the ACM New Security Paradigms
Workshop, 1996, 27-33.

[19] Zurko, M. E., Simon, R., and Sanfilippo, T. A user-centered,
modular authorization service built on an RBAC foundation.
In Proceedings of the IEEE Symposium on Security and
Privacy, 9-12 May 1999, 57-71.


