
Seeing Further: Extending Visualization as
a Basis for Usable Security

Jennifer Rode, Carolina Johansson†, Paul DiGioia, Roberto Silva Filho, Kari Nies,
David H. Nguyen, Jie Ren, Paul Dourish, and David Redmiles

Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3425

†Department of Information Technology
Uppsala University

Box 337, 751 05 Uppsala, Sweden
{jen, cjohanss, pdigioia, rsilvafi, kari, dhn, jie, jpd, redmiles}@ics.uci.edu

ABSTRACT
The focus of our approach to the usability considerations of
privacy and security has been on providing people with
information they can use to understand the implications of their
interactions with a system, as well as, to assess whether or not a
system is secure enough for their immediate needs. To this end,
we have been exploring two design principles for secure
interaction: visualizing system activity and integrating
configuration and action. Here we discuss the results of a user
study designed as a broad formative examination of the successes
and failures of an initial prototype based around these principles.
Our response to the results of this study has been twofold. First,
we have fixed a number of implementation and usability
problems. Second, we have extended our visualizations to
incorporate new considerations regarding the temporal and
structural organization of interactions.

Categories and Subject Descriptors
H.5.1 Information interfaces and presentation (e.g., HCI): General
– Evaluation/methodology; K.4.4 General: Computers and
Society – Security

General Terms
Design, Experimentation, Security, Human Factors

Keywords
Effective security, theoretical security, usable security, user study,
dynamic visualizations, configuration in action, peer-to-peer file
sharing, history, user and media characterization

1. INTRODUCTION
Although interest has been growing in the usability of privacy and
security, there is still considerable debate over what topics are
actually of concern here. One approach (what we call the “strict
usability” approach) applies traditional usability measures to
individual security components that people might employ in the
course of regular computer usage (e.g. passwords and other

mechanisms for authentication, encryption technologies, virtual
private networks, communication tools, etc.) A second approach
(what we call the “everyday use” approach) argues that privacy
and security cannot be held to absolute measures, but rather need
to be negotiated in everyday use just as social scientists have
argued for interpersonal privacy [3,4]. Visualization technologies
have been a particularly appealing mechanism in this approach.

Advocates of this everyday use approach, including ourselves,
have argued that the critical concern for “usable security” is not
that applications or software components demonstrate measurable
effectiveness upon some abstract scale, but rather that people
must, in the course of their activity, be able to make informed
decisions about their actions. Ironically, this involves an inversion
of traditional approaches to usability. Where “usability” has often
been associated with a distancing of users from the details of
system implementation, visualization approaches argue that, in
fact, aspects of a system’s behavior need to become visible or
manifest to people as part-and-parcel of their interaction with
technology.

It is often suggested that this approach is problematic because
exposing people to the details of system operation might be
confusing and overwhelming. Two analogies may help to express
our position. One is the analogy of driving a car. Most drivers,
consciously or unconsciously, monitor and respond to aspects of
the car’s internal behavior that become apparent to them in the
course of driving – such as the sound of the engine, the feel of the
steering and the clutch, etc. This does not require that they have a
detailed understanding of the car’s mechanical and control
systems, but merely that their activity is coupled to the car’s
actions in ways that allow for fine-grained control. Our second
analogy is to other aspects of system behavior. Not all
components of the user interface manifest themselves graphically.
One key source of information about the behavior of a system is
its temporal response – what things are quick, what things are
slow, how responsive the system might be. These are cues around
which user activity is organized. Hence, when we suggest that a
goal for usable security is to make aspects of system behavior
visible so that people can make informed decisions, we neither
suggest a dependency on complex models of system structure, nor
extensive graphical displays. Rather, we want to make system
behavior apparent in ways similar to those that support the
detailed temporal organization of activity and the reflexive self-
monitoring of a driver.

We have been exploring this approach to usable security in the
Swirl project. Early work from this project was published in the

Copyright is held by the author/owner. Permission to make digital or
hard copies of all or part of this work for personal or classroom use is
granted without fee. Symposium On Usable Privacy and Security
(SOUPS) 2005, July 12-14, 2006, Pittsburgh, PA, USA.

SOUPS conference last year [6,7]. In this paper, we wish to
explore a number of further issues addressing unresolved
questions from our earlier work, including questions that arose in
discussions following our paper presentation last year, particularly
more extensive evaluation. In addition, we want to show how we
have been extending the initial techniques in order to incorporate
new considerations, most particularly those of the temporal and
structural organization of interactions.

2. The Impromptu Testbed
In a paper for this conference last year [6], we discussed three
design principles that we are exploring in order to further
understand our theoretical approach: visualization mechanisms,
integration of configuration and action, and the use of event-based
architectures. The Impromptu prototype, an application for ad-hoc
peer-to-peer file sharing, was developed as a testbed to explore
both the concept of integrating action and configuration and the
concept of dynamic visualization of activity. That is, Impromptu
was not designed to be the best file sharing interface, but simply
an application with which we could explore our design principles
in a scenario that would be comprehensible to test subjects. A
journal publication delves more deeply into the theoretical design
and related literature [5].

Visualizing system activity gives users a means of understanding
and assessing the consequences of their action. By providing
dynamic feedback on relevant but hidden aspects of system
activity, our goal is to provide people with a means to understand
the relationship between their actions and the technology
configuration through which they are performed.

Conventional interfaces separate configuration and action in both
space and time. System activity is usually separated from
configuration, through the use of a separate control panel in which
preferences are set. This presents a dual problem: not only does it
separate two coextensive forms of activity (the act of “sharing
being distributed across the preference window and the system
window), but it also separates the expression of preferences for
the occasion or situation in which those preferences are to be
invoked. Our design approach seeks to make configuration and
action part of the same interactional space.

2.1 Design
Figure 1 depicts the Impromptu client interface. The primary
interface feature is the circular “pie” corresponding to the shared
workspace as a whole in which each “slice” corresponds to a
single user’s area of the shared workspace. These areas expand
and contract as users arrive and leave. Files, represented by
labeled dots, are placed in and around the circular region. Each
area is tagged, on the pie’s perimeter, with a unique color
assigned for each user. This color is also associated with a user’s
files, and with indicators of that user’s activity.

The pie in turn is separated into multiple concentric regions; the
basic metaphor is that the closer the files are to the center, the

“more shared” they are. Various degrees of sharing might be
implemented. The particular mappings we have been using are
that files outside the circle are not shared at all, but available to
the local user only; files in the outer region are visible but not
readable or writable to others; files in the next region are readable
but not writable; in the next, readable and writable; and in the
center, readable, writable, and available persistently. Persistent
access means that the file remains accessible even after the owner
leaves the session; by default, files are non-persistent, meaning
that when the user leaves the session, their files will disappear
from others’ interfaces.

The dynamics of the interface reflects its concern with the
visualization of internal actions. Individual activities are reflected
quickly to the group as a whole, for two reasons – first, this
ensures that everyone can see potentially consequential actions,
and second, it provides individuals with direct visual feedback on
the ways in which their own actions are seen by others. This is an
important consideration in developing an understanding of the
consequences of action. Furthermore, the dots that represent files
also represent activities over those files. For example, remote file
accesses to local files cause the icons for the files to blink in
colors that indicate the identity of the user accessing them. This
dynamic visual display draws attention to current activity and
allows for a quick overview of access patterns.

Figure 1: Impromptu Client Interface

2.2 Implementation
The goals of the Impromptu testbed imply four significant
constraints on software design and implementation. First, setting
up a collaborative file space should require essentially zero
configuration; the overhead must be negligible, or close to it, in
order for the application to be effective. Second, since sharing is
ad hoc, it should require no prior registration of relevant parties.
Third, ideally, the system should be operable with no fixed
infrastructure; it should not require, for example, connection to
the public Internet. The fourth is that it should operate on a wide
number of platforms. Counter-intuitively, strict security is not a
requirement, for two reasons: we see security as a relative matter
for user determination, and our goal is to make both secure and
insecure states visibly manifest.

The implementation of Impromptu was improved since our
previous SOUPS paper based on issues arising in the evaluation
described in the next section.

Primarily, changes were made in order to improve the
performance and the integration of the application with the
operating system. An HTTP filter was used instead of a Servlet, in
order to implement our virtual global repository, increasing
performance. The access to the local WebDAV repository is now
made through the operating system (currently Windows, Mac OS
X), allowing files of all types to be shared and manipulated by the
application.

The current Impromptu architecture is illustrated in Figure 2.
Each client’s files are stored in a WebDAV repository. WebDAV
[9] is an IETF standard that extends the HTTP protocol for
distributed authoring and versioning. WebDAV provides us with
a standard interface to access file and control access permissions.
Each client runs a local instance of Jetty [1] a Java HTTP server
containing a Slide [2] WebDAV servlet. A Jetty filter stitches

these separate servers/repositories together and creates, on each
client, a unified virtual shared space. For example, when reading a
file in this virtual folder, the filter will redirect any request for a
remote file to the appropriate peer where it is being shared; on the
same token, a request for a listing of all files will return an
aggregated list of the contents of all Impromptu peers’
repositories. The choice for WebDAV was motivated by its easy
integration with current operating systems, being broadly
accessible across platforms both through Web interfaces and also
through native file system interfaces on a range of systems
including Windows, MacOS X, and Linux.

In our unified repository model, there is no central server; the
system operates entirely as a peer-to-peer architecture in which
each “client” is, essentially, also a server and in which no server
has a uniquely distinguished role. Shared files, then, are
distributed across the set of clients that make up a session, and so
when a user leaves, their files disappear from the workspace.
When users leave the system, all their persistently shared files
(those in the center of the “pie”) are automatically moved to
another machine. In this way, a session persists through multiple
arrivals and departures until, finally, there is no Impromptu client
running.

One particular challenge in a peer-to-peer workspace
implementation is the identification and management of peers that
are constantly arriving and departing from the network. We
accomplish this using an implementation of the IETF Zeroconf
protocols [14]. Zeroconf is a set of protocols that implement peer
discovery, address allocation, name resolution, and related
services over the TCP/IP protocols. This allows Impromptu peers
to find each other automatically with no previous configuration or
user intervention. Whenever someone runs Impromptu, it
automatically finds and joins other Impromptu peers on the same
network.

Slide WebDAV

Jetty filter

Zeroconf mDNS

Slide WebDAV

Jetty filter

Zeroconf mDNS
Peer discovery

protocol

VIRTUAL WEB FOLDER

WEB-DAV protocol
over jetty HTTP server

local YANCEES local YANCEES
VIRTUAL PUB/SUB BUS

WebDAV
events

Peer publishing of events

file
access

file
access

GUI events GUI events

WebDAV
events

Figure 2: Impromptu Architecture

Impromptu is implemented over an event-based architecture,
which allows the GUI component to monitor and register access
events from both local and remote repositories, as well as to
present a unified (WYSIWIS) view of the application session. In
other words, in Impromptu, events are used to both visualize
dynamic activity and to ensure view consistency. This is
accomplished by a virtual event bus that connects local and
remote repositories with local and remote interface components.

The event-bus was implemented using YANCEES (Yet Another
Configurable and Extensible Event Service) [13]. YANCEES
provides a higher level of extensibility and configurability
through the use of plug-ins and extensible languages, allowing the
infrastructure to be adjusted and tailored to the need of the
application. With YANCEES, developers can define their own
plug-ins for each aspect of event publishing, routing and
dissemination. YANCEES allowed us, for example, to customize
the way the event routers are federated. A protocol plug-in
implementing IETF Zeroconf was used to integrate different
YANCEES instances in each Impromptu peer, providing an event
bus that adapts to the current Impromptu configuration.
Additionally, each local YANCEES router was also customized
with a fast switch event routing plug-in that allowed it to scale to
the needs of our interface. Finally, YANCEES supports publish
and subscription filters that allowed us to implement security and
visualization policies. For example, filters were developed that
prevent local events such as the reading or writing to private files
to be propagated to other peers.

The architecture is designed for ease of use, especially to
minimize configuration, and to allow for flexibility in working
styles and in patterns of collaborative engagement. Given that the
application scenario is support for face-to-face workgroup
meetings, scalability was explicitly not a concern, nor was remote
working. This same motivating scenario was the basis of our
initial user study, described below.

3. User Study
As described above, Impromptu is intended to serve as a testbed
for a set of design experiments in the use of visualization in
support of usable security. Having constructed the basic
implementation described above, we initiated a trial to study its
use. Given the relatively early stage and broad scope of this work,
the goal of our study was not to test specific hypotheses, nor to
generate quantitative data about the use of particular features; it
was not a usability trial. Rather, our goal was a broad formative
examination of the successes and failures of the initial design, in
support of further iterations.

In order to achieve this, we designed an open-ended, semi-
naturalistic study in which a high-level task would provide the
context for exploration and use of Impromptu, so that we could
observe the use made of various features.

3.1 Experimental Design
3.1.1 Subjects
We recruited 24 graduate students all of whom were pursuing
degrees with an Informatics concentration. These participants,
clearly, represented the upper end of computer skills for our target
population; however, they did not have prior familiarity with the
project nor the goals of the user interface they were testing.

3.1.2 Method
The study itself was comprised of eight small group sessions. As
all participants were students, group members had a mixture of
strong and weak ties. Each session contained participants from a
variety of research groups, so the session had neither an inherently
competitive or collaborative bias from the start.

Each session had three participants using the Impromptu
application. All sessions were run by a single facilitator, and each
participant had a dedicated observer taking notes on their
interactions with the system. Sessions were audio taped.

Following each session, user participants were debriefed
individually by one of the note takers. In the course of the debrief
we encouraged each of our 24 participants to provide three
negative and positive critiques of the user interface.

3.1.3 Task
The overall task was for participants to collaborate on a research
budget as part of a grant application. The combined maximum for
the budget was $15,000, to cover travel and equipment expenses.
Participants received a list of estimates of costs for common
pieces of equipment and typical conference travel. They were
also allowed to use the Internet to look up additional information.
To help ensure participants take the task seriously they were asked
to imagine that this opportunity was their one chance to get their
advisor to pay for all of the equipment and travel, the everyday
financial realities of their research.

Specifically, each participant was asked to compile first an
individual budget, and then create a justification for each expense.
As part of doing this participants were instructed to import these
individual files into the Impromptu workspace. It was left up to
the individual participant to decide if the file was to be totally
invisible, visible but not accessible, readable, writable, or
persistent. Next, they were asked to compile a shared budget that
took into account individual requests. The nature of the task
meant participants were encouraged by the facilitator to make
their individual budgets available to other participants. In
practice, this meant that participants who had not already done so
felt social pressure to transitioning their files from the invisible or
visible but not accessible state to a readable, writable, or
persistent state.

The nature of the task meant that participants had considerable
leeway as to when and under what circumstances they choose to
share their files and to what degree. Further, given that
participants were competing for resources they could create
strategies to help maximize the amount of money that would be
allocated to them. Strategies included free sharing of information
from the start (e.g. session 4), hiding personal budget until the last
possible minute (e.g. participant A in session 6), sharing despite
other’s strategies (8b), or maliciously editing other budget
justifications to help ensure they received more money (7c). This
meant that privacy in the form of setting access control of one’s
own files were instrumental to the task.

3.2 Findings
As we previously stated this study was not intended to generate
quantitative data about the use of particular features but rather to
assess the effectiveness to the approach, specifically the
integration of configuration and action and the use of dynamic

visualization of system activity. In addition we were interested in
identifying areas for future attention and research.

3.2.1 User Interface & Implementation
Although the study was not intended to generate data about the
use of particular features, the open ended nature of the task often
resulted in speculative feedback on the user interface and
performance rather than feedback on the tasks themselves.

Our goal was to understand how people would make use of
Impromptu. Accordingly, we did not specifically prime
participants to focus on security; rather, we wanted to see how
these issues would arise in naturalistic interaction. We were
gratified, then, that participants viewed Impromptu primarily as an
integrated collaboration tool rather than a file sharing application.
In fact, the concreteness of the user interface design seemed to
create significant expectations for sharing within the interface. For
example, nine users complained that documents did not update
“live” (i.e. that Microsoft Word, when run from Impromptu, did
not become a multi-user tool). While framed as negative
comments, then, we actually take these as positive affirmations
that, first, the focus on concreteness in the interface generated a
strong sense of shared activity, and, second, that sharing and
interaction, rather than security, were the primary focus of
people’s attention in the trial.

Another significant complaint was on the performance of the
system. We have since devoted considerable attention to
addressing these performance issues, streamlining the
implementation in order to eliminate a number of problems that
had resulted in significant performance degradation.

3.2.2 Configuration in action
As we had hoped, the structure of the task encouraged different
styles of collaboration to emerge, and in turn required that people
think about “security” and degrees of sharing differently as the
task progressed. So, during the first more mercenary phase of the
task one participant commented (6a) “I can’t grab anybody else’s
files. That’s probably a good thing.” Later on, a more
collaborative spirit emerged where participants negotiated the
setting of file permissions dependent on the task. This negotiation
also allowed for the creation of collective norms and strategies
towards sharing, as in the following exchange:

Participant 7a: “Do I have to share?”

Participant 7c: “Come on. Put it in the second ring”

Facilitator: “Why did you say the second ring?”

Participant 7c: “Well, you know. It’s the norm, and you don’t
want to share more than necessary, right.”

This suggests Impromptu supported context sensitive negotiation
of sharing, and further encouraged participants to develop explicit
strategies as to how to best share files to achieve their task related
goals. The assessment and recognition of these norms relies on the
fact that actions and configurations are mutually visible to all.

One participant went as far as to express concern configuration in
action was too easy: “For instance it’s easy to just drag it from
outer spiral to the inner spiral to make it more public because
this is a file I really don’t want to be seen at all by the people. If
it’s too easy for me to move to the middle then maybe somebody
can see it while I actually can drag it across” (1c). However,
despite this concern addressed in the debrief none of our

participants commented, nor did we observe, anyone mistakenly
giving participants access to their file which they did not intend.

Further, several participants commented on the benefits of a visual
interface as opposed to a more traditional textual view of security
settings. These included having “visual control” which they felts
was “more immediate than setting permissions” (1a). Further
dragging and dropping meant not having to remember commands,
prompting participant 6b to comment, “I realize it is a much
easier than I used to think.” Participant 7b sums up these benefits
as “There is no new conceptions [sic] regarding of security
access level, but it gives me visual areas, opens that concept to
many people. In Unix, there is access control, but it is not so
obvious. I think the new thing is the interface, they way we can
change the level, and the colors and visual cues such as blinking
make a lot of people understand the accessibility.”

Table 1. List of 13 positive comments on Impromptu’s ability
to support configuration in action:

 4 Easy to share files

 4 Easy to set permissions

 2 Easy to modify files

 1 Doesn’t require technical knowledge of permissions

 1 Private level is intuitive

 1 One can show or hide easily

Impromptu provided individual participants with an ability to
configure while completing actions. Next we will discuss
Impromptu’s partial success in allowing visualization of system
activity.

3.2.3 Dynamic visualization of system activity
Impromptu, also, allowed participants to make sharing decisions
in context of their situation. However, the interface design
decision to make the Impromptu tool a separate window from the
application challenged this goal to some extent, as 7b comments,
“it still decouples from the applications we use.” It was possible
to obscure the Impromptu UI by maximizing a word document, as
participant 4c comments, “We focus on files and projector, but
not [Impromptu]. The monitor is small, and it is easy to cover
[Impromptu].” This presents a significant usability problem
which could be overcome through an additional small persistent
screen containing the Impromptu user interface, or a persistent
panel in the user interface.

Impromptu gave participants a sense of others participation. Our
data indicates participants noticed when others added files to the
collaboration (4b, 8c) through the appearance of new dots.
Impromptu allowed participants to ascertain ownership of files, as
indicated by participant 3a’s comment that you know “whose files
are whose…you know what's important to share.” Further,
Impromptu “emphasizes what to explore, what's important.”
Several of our participants (5c, 7c, 8a & 8c) relied on the mouse-
overs indicating sharing level to help them decide at which level
to share their file.

The Impromptu application supported participants’ ability to see
new files added, the changes in permissions, and to check to see
how files had been updated. Impromptu provided participants

with a sense of how other participants had interacted with the
files:

• 8c: “Yes, because it’s saying read-only but, you know,
initially it was – change the whole document on this –
in this area.”

• 4a: “It made it clear if someone can see or view files,
but just a little bit. The visualization was a little
helpful.”

However, this history of interaction proved inadequate as
discussion of the rings around the file indicated. The rings around
the file indicated who most recently interacted with the file in this
case interacting could mean reading, editing or copying a file.
Participants generally understood this meant others had interacted
with their file, except for participant 1c who asked, “but maybe if
there could be a mechanism to see whose reading your file right
now. Does that exist?” during the debriefing. While a few
participants mistook the rings function generally, most broadly
understood the concept though there was confusion about the
nuances of their function:

• 4a: “Someone asks who opened my file? It looks like
someone edited my file!”

• 7c; “OOOH, the ring is who has it open, or who has
ownership of it. Cool!”

• 8a: “Oh. Oh, cool. The little – so the little outer ring on
the dots is. like, who’s got it open, or who’s got
ownership of it right now. Yes, yes. Oh, that’s cool.
{Sound of computer chime}. So, I guess I’m the only
person that actually went over (inaudible) so I can just
trim some of my stuff off (inaudible), if that’s cool”

Participants were confused as to whether the ring indicated the
current state of the file (ownership) or whether it represented a
past edit of the file. This suggested that a single ring serving as
indicator of the current state of the file as well as an indication of
previous interactions with the file was inadequate.

Many of our participants used the application to examine new
files and recent changes, which proves promising for security. For
instance, in the case of our “malicious” participant, the change of
the ring color did successfully, although not immediately, indicate
a change had occurred. As a result, the file’s owner opened the
modified file and discovered the “malicious” alteration of the
document. The “malicious” participant commented on this in his
debrief, “I was very careful. I didn’t give other participants
‘write’ access to my files. Others were not so careful. They left
some files writable. I changed one participant’s justification to
make him greedy. That is one of the scary things, which partly
makes this an interesting scenario” (6c). A cordial confrontation
occurred which resulted in the “malicious” participant to promise
to undo his changes.

The ability to monitor participants’ changes and respond to all
threat situations which occurred, suggests that Impromptu was
successful as a means of visualizing system activity. However,
there was a sense that visualizing only the immediate state of the
system was inadequate to address all of the participants’ needs.
This was an important consideration for our subsequent work
(below).

A concern did arise as to who could log into the system.
Participant 5a commented to this effect that they were “Unsure

Table 2. List of 20 positive comments volunteered during
debrief about the ability to visualize system activity:

 5 The rings and blink around file icons indicate what is
open

 5 Permits you to see what others are doing, “awareness”

 4 Clear indication of which files belong to who

 2 Concentric spheres representing levels of privacy

 1 Clear who is logging in

 1 Clear indication of who is looking at what file

 1 Clear indication of who is accessing your own files

 1 Good visualization of different levels of access

who can access - there is no control access” (5a). Further,
participants mentioned wanting ability to set participant by
participant permissions. As participant 3b commented, “It would
be good if you could grant very limited access to just one
person—a finer granularity that is not just for all people but for a
specific user.” While the ability to set participant by participant
permissions was outside of the tasks on which we choose to focus,
this information does make it clear that there is a need to
distinguish familiar and unfamiliar participants.

3.3 Discussion of study results
As indicated, our empirical investigation was not intended to
provide a quantitative measure of effectiveness. Rather, we had
two goals – first, to assess the effectiveness of the approach in
broad terms, and second, to understand areas for future attention.

Broadly, the results support our initial design principles. It was
clear that people were able to accomplish the task, were able to
interpret activities that they saw manifest within the interface, and
were able to configure the interface appropriately to the work
being conducted. The integration of action and configuration – as
reflected particularly in the spatial arrangement of the interface
and its use of direct manipulation techniques – presented few
problems and was, largely, picked up easily and naturally. As a
number of subjects commented in the post-experimental debrief,
the progressive approach to file permissions was natural and easy
to pick up even without detailed understandings of file system
security. Further, our focus on concreteness and mutual visibility
supported the emergence of group norms, as attested to by
comments in the debriefing and exchanges during the tasks. Since
everyone’s actions were “publicly” visible, and since the common
views and common orientation of interfaces made for a strong
sense of shared presence, informal conventions about
configuration emerged; in the experimental task, groups’ final
configurations displayed a remarkable uniformity between
participants. Our primary concerns with respect to both real-time
visualization and integration of configuration and action, then,
seemed to be justified.

On the negative side, system performance was a major
consideration, and a major focus of subsequent attention. This
was, in fact, the single largest negative issue reported, but it is not
relevant to this paper. A number of specific UI issues arose, as
indicated above. However, beyond these, our study provided us
with three areas for further research and design attention.

First, it drew attention to the problems of screen “real estate” and
in particular that the Impromptu user interface could be obscured
by maximizing a window. This is the subject of our future work,
as we will discuss later.

Second, an aspect of behavior that we particularly noticed during
task performance was the understanding of previous activities.
While the facilities provided in Impromptu support real-time
visualization of activity, events are not available for later re-
examination. We already saw cases of people using, for example,
ring color to indicate not just current activities but also action in
the recent past, but this history is very limited. In addition, as
people work on tasks supported by Impromptu, they work in other
applications in order to edit files, etc., and so their attention is not
always directed towards the Impromptu window. As we had
noticed in previous experiments, this is particularly problematic
when screen real estate is limited. Recovering recent context on
returning attention to the Impromptu window is a useful facility.
However, it was important for us to do this in ways that do not
interfere with the concreteness and directness that characterizes
the interface.

Third, given that we had chosen to develop an open system where
anyone could join the collaboration, data from our participants
illustrated a need to provide more information on new participants
to allow familiar and unfamiliar participants to be easily
distinguished. Further, this would allow participants to asses the
security risks posed by new participants so they can configure
their responses.

Accordingly, our design efforts after this user trial focused on
addressing the second and third issues—the history of the
visualization and additional information on new participants. Our
efforts were directed towards attempts to go beyond instantaneous
views of activity, and to incorporate a wider range of
considerations into the same visual framework.

4. EXTENDING THE DESIGN
In our work since the user trial reported above, we have sought to
extend the visualizations in the Impromptu framework, building
on what worked well and extending into areas that seemed to
require more coverage. We have been particularly concerned with

history and temporal consistency. We discuss the different visual
extensions individually here.

4.1 Rings and Ripples
The ability to be able to see more than simply immediate action
was a repeated observation in the user study. In order to display
more history than just the most recent activity, while maintaining
the physical metaphor that sustains the rest of the Impromptu
design, we extended the rings into “ripples.” The initial “rings”
were borders of the document icons that would flash to indicate
activity over the document by another user. After having flashed
for a shorter period the ring would stay on permanently around
the icon until a new activity occurred. The color of the ring
indicated the identity of the user generating the activity indication,
although simply the fact of activity rather than the nature of
activity was often more significant. In order to add more
persistence to this display, we extended it so that the rings ‘ripple
out’ from the document icon. Up to three additional concentric
rings indicate recent activities. These three rings are not, as is the
case with the inner ring, directly attached to the icon but have a
small separating space.

The first, innermost ring continues to be a persistent indicator of
the files state, allowing users to easily distinguish between an
untouched file and a one that has been edited or read. Note that
rings now only change color as a result of read and write events.
This first ring continues to show the color of the person who has
most recently interacted with the file. So, one user’s activity
initially activates the fist ring bordering the file dot icon, but
subsequently ripples towards the outside before disappearing
altogether. The second ring’s color shows the second most recent
person to interact with the file, and the same holds with the third
and fourth rings. For all rings new activity on the document would
cause older activity to ripple out, but the “rings” indicating
activity can also disappear when reaching a specific fadeout time.
We extended the 2nd, 3rd, and 4th rings with fadeout in order to
more specifically give the users an understanding of more recent
events and which documents have most recently had activity. The
fadeout of the activity can be set to equal time for both read and
write events or to different times depending on which of these two
events it represents. A write, being considered a “heavier” event
with more possible impact on the document, could be given a
longer time before fading out compared to a read event.

The difference of behavior of these two types of rings is visually
indicated to the user in two ways. First, the permanent ring is
attached to the file. Second, the two types of rings are
differentiated by the gap between them.

Figure 3 depicts the most recent history of file “Milestones.doc”,
belonging to the “red” user (shows up as medium gray in
grayscale printing). Around the icon we can see that three
different users with three different colors have left traces of
activity. The most recent activity is by the user with yellow (the
lightest color), which activity also gave rise to the third most
recent event indicated by the third ring. The user with blue (the
darkest color) caused the fourth most recent event, which display
of activity over the file will be rippled out of the visualization
when a new activity occurs. The second most recent activity over
Milestone.doc originated from the owner of the file itself, the
“red” user.

Figure 3: History Rings

4.2 History Pie
The extension from rings to ripples allowed for more activity to be
displayed but since events ripple or gets pushed out they will not
display more than the 4 most recent activities. We designed the
“history pie” to provide a complete temporal description of all
activities on a file over the full duration of a session. It could also
be set to only convey activities under a more recent, shorter
period of time. This builds on the same concern to see more than
immediate activity, as indicated in the study, but takes a broader
view. The same basic design principle used for ripples – that
records of activity start towards a center and ripple towards the
edges – is the basis of this display which presents more history.
While the rippling rings indicate only immediate activity, this
view shows the entire history of activity over a particular file.

This history is displayed on a smaller version of the circular pie
interface element, which takes on the same organization,
orientation, and color assignment of the users as the central
display. This view is displayed when the user mouses over a
document icon in the main interface. When this happens, the
history of previous activities over that document is displayed in
the small history pie in the lower right corner of the interface.
Each historical action is indicated by an arc in the small display.
Arcs are drawn in the radial “pie-slice” section that corresponds to
the user whose actions are represented, and they are drawn on a
timeline that stretches from the recent past at the center to the
distant past at the edge of the pie. The effect is rather like the
rings that indicate the growth pattern of a tree.

Figure 4 portrays a mouse-over of the file Timeline.doc, a file
owned by the blue user “swirl”. The mouse-over triggers the
display of the history pie. By only viewing the icon and its rings
one can see the most recent history but viewing the history pie of
the file more information is given. The icon shows that the “blue”
user (lower right) most recently had activity over the file and
earlier in time the “yellow” user (middle left) had touched the file.
But the history pie, set to display the full history, shows that the
“red” user (upper right) was the first user to touch the file. The
display does not, however, differ in visualizing read or write
events. The history pie gives the user a good indication of which
users have been interested in the file in question and when in time
during the session they were active on it.

4.3 Activity Wear
The history display provides a convenient view showing the
activity of all users over one document. This is complemented by
a view to show the activity of each user over all files. Again, this
responds to the need for “overview” indicated in our study.
Drawing on the idea of “edit wear and read wear” introduced by
Hill et al. [10] in which repeated actions result in patterns of wear
on the artifacts over which they are performed, we use the edge of
each pie slice to display an indication of the accumulated history
of an individual’s action. Each user’s activity is calculated relative
to the other users’ activities. A maximum width border indicates a
very active user and a thin minimum width a relatively inactive
user. This means that the inactive user could in fact also have
been quite active but compared to the total activity of the session
he/she is considered relatively inactive. Reading a file and writing
to a file are the two types of activities that we measure. The idea
here is to be able to tell the difference between particularly active
users and relatively inactive ones. It is not because we take
activity or inactivity to be signs of inappropriate or problematic
behavior; rather, we want to make any differences between
people’s roles and apparent activities and their actual actions
visible in the interface. The activity wear can be set to represent
the activity of the user over the whole session or during the most
recent time period. The later choice will display a user as active
only when it is in the recent past. When some time has passed the
users activity wear will shrink down and the border display get
thinner. This border will at a glace give the users an
understanding which user is the most active at the moment.

In Figure 5 the width of the users pie slice’s displays that user
“swirl” (lower right) has been the most active user during the
most recent 5 minutes and user “lina” (upper right) the most
relatively inactive.

4.4 User Characterization
Each of these three previous visualizations has extended the
concreteness and immediacy of the original Swirl interface with
mechanisms to make aspects of history available. However, the
history that has become manifest in these views is the history of a
particular session, or the part of the session that any given user
might see. Most people, however, work together over long periods
of time and might be engaged in multiple sessions. The history of
activities over time provides another useful source of information.
In this case, what we want to know is whether the system
configuration that we encounter at any given point is what we
might expect. We believe that, while normative distinctions
between “acceptable” and “unacceptable” security are impossible
to determine, distinctions between “familiar” and “unfamiliar” or
“usual” and “unusual” can more easily be incorporated into user
practice.

One opportunity to do this exploits the fact that most of the use of
Impromptu is based on personal devices, and particularly laptops.
By examining the Address Resolution Protocol (ARP) [12] cache,
we can determine whether a user name is associated with the
hardware Ethernet address that we expect.1 When someone
appears on a different address than we have seen before, it may
simply be because they have a new laptop or a new network card;

1 MAC addresses can be spoofed, of course, and so there are

dangers on relying on this in a real, rather than illustrative, case.

Figure 4: History Pie

or it may indicate a man-in-the-middle attack. Following our usual
procedure, our goal is simply to make clear the differences that
might allow one to make an informed judgment.

In our implementation, alert icons are used to indicate unknown
or unexpected mappings of users to Ethernet connections. In
Figure 5 we see the screenshot from the screen of user “lina”
(upper right). User “swirl” (lower right) is displayed as a known
user meaning its hardware Ethernet address matches the address
stored for this username. That is the user “lina” has been in a
previous session with user “swirl”. User “jie” (middle left) is on
the other hand an unknown user to user “lina” and a warning
triangle beside the username “jie” displays this.

4.5 Media Characterization
The previous discussion of visualizations has focused primarily
on representations of historical information – dealing with users
that join a particular session, and the files they share. This is
clearly relevant to people’s activities. However, the
characterization of users is certainly not the only relevant feature
here. We are interested in understanding the ways in which the
network is configured, and one starting point for this is the
method through which users connect to the application.

While it may be immediately apparent to a single user how he or
she connects to any shared workspace (using a wifi-enabled
laptop, a wired desktop, or a wireless handheld device) simply by
virtue of using that device, this information is generally not
apparent to the other users of the shared workspace. This concept
of keeping the connection medium transparent to the application
draws its roots from the TCP/IP stack, which owes much of its
success to its ability to mask the intricacies of different media on
the lower layers of the protocol stack with its higher, media-
independent layer. While this transparency is useful in some
settings, we believe that revealing the connection method of the
users of the workspace presents the opportunity for users to make
more informed decisions about their sharing activities.

Consider some examples. Traditional (coax) Ethernet is a shared
medium, in which all packets traverse the same cable path,
making them potentially available to all hosts. In twisted pair
Ethernet, hubs redistribute information this way, while switches
do not. The question of precisely how one is connected to the
network, then, has important implications for data visibility – and,
of course, this might be a feature of how others are connected to
the network too. The introduction of VPN and wireless networks
introduce further complexities. Our intention initially is not to

Activity wear:

Thick edges
indicate high

activity

Media

characterization:
Wireless network
connection icon

Activity wear:
Thin edges
indicate low
activity

User
characterization:

Warn sign indicating
previously unknown

user

Media
characterization:
Wired network
connection icon

Figure 5: Impromptu Client with Activity Wear, User Characterization, and Media Characterization

display the immediate data leakage of wireless data transmission,
as in Kowitz and Cranor’s work [11], but rather to convey the
notion that different sorts of connections hold different sorts of
consequences. Media transparency, in other words, is a good idea
for system interoperability but may be a poor idea for usable
security.

One method of revealing the details of a user’s connection
involves the inspection of the network interface details at the
client, allowing us to determine whether the connection is a wired
or wireless type. Additionally, we may examine whether the
connection is encrypted by means of a VPN tunnel. Here, as in the
user characterization visualization, icon representations are used
to indicate the type of connection (e.g., wireless 802.11a/b/g or
wired Ethernet) used by each participant connecting to the
Impromptu application. In Figure 5 these icons are situated
adjacent to the usernames. The users “swirl” (lower right) and
“jie” (left), are both connected to the session over a wireless
channel; “lina” (upper right), on the other hand, is using a hard-
wired Ethernet connection. Thus, in this example, the “lina” might
be concerned that an unknown user “jie” has performed an action
on her over a wireless connection.

Again, we feel that it is impossible – both for the user as well as
the system – to make clear-cut distinctions between “good users”
and “bad users.” However, the less abstract distinctions between
“wireless” and “wired,” or “using VPN” and “not using VPN” are
concepts that are more readily understood by users. While a user
may initially be warm to the idea of sharing his files to an
exclusively-wired Swirl session, his opinion may change upon
receiving a notification that a new user has connected wirelessly.
The introduction of a wireless laptop to the Swirl session brings
with it the potential for information leakage through the wireless
channel. Our visualization is meant to be used as a method of
notification: the decision of whether or not this is a concern – and
what action should be taken (the movement of one’s files to a
“less-shared” area, for example) – is to be made by the user.

5. DESIGN CONSIDERATIONS
The goal of these efforts has been to extend the range of the
visualizations in the Impromptu prototype, in line with our goal of
providing people with insight into their system behavior in
support of informed decisions. In our initial design, we found that
concreteness was a key property. Not only did it support the
integration of configuration and action that was one of our basic
design principles, but it also provided a rich metaphor for
collaborative interaction. By concreteness, here, we mean the way
in which the elements form which interaction is constructed have
a direct, single, visible manifestation in the interface. People are
not abstract entities, but represented as regions; access levels,
similarly, are visible as regions of the interface; and all files in the
system are visible concurrently, as individual objects.

This concreteness also gave rise to a concern that the interface
manifest the same appearance to all users. Previous studies in
collaborative systems have shown that this can be particularly
important for collaborative applications in support of face-to-face
interaction; it supports easy mutual reference and disambiguation
[15]. Intriguingly, though, the addition of some of these new
features begins to question this.

User characterization, for example, does not result in the same
visual appearance for all users. One obvious example is that one is

always a familiar user to oneself, but not always to others,
resulting in different appearances. More generally, what user
characterization presents is a per-user view of interaction history,
and so must inherently differ from user to user. When we
incorporate not just the history of files but also the history of users
and interactions into the interface, then we begin to introduce
elements that must challenge our initial goal.

File history, however, also presented some unexpected challenges.
Particular problems arise from the fact that the configuration of a
session may change over time, as people join and leave. This
raises a question for displaying the history of a file – just what
history should be shown? What period is the basis for a historical
view? Maintaining a common view for all suggests that history
should be recorded per-session; that is, the entire history of that
file during the session would be recorded, whether or not any
particular user had participated in the session for that entire
period. This clearly, however, discloses information that a user
would not otherwise have had access too. The alternative is to
restrict history for each user to be just the history over the period
during which they participated, although of course if users have
different participation trajectories, then they will see different
histories. Even more difficulty is introduced by the fact that users
might join, leave, and then later re-join. In our current
implementation, in fact, this generates a curious case where the
continual participants get to see the entire history for the
intermittent participant, while that participant may see only the
history since their most recent arrival.

Outside of this edge case, though, the principle that describes the
resulting design – that the interface always show only what you
might have seen yourself if you had been watching the window
continually – seems a reasonable one, and one that can be easily
explained. It does, however, result in a loss of concreteness.

6. FUTURE WORK
While our new use of rings, ripples, the history pie, activity wear,
user and media characterization address the issues of temporality
and feedback on new users that arose in the study, these features
are themselves untested. In our future work, we plan to conduct a
user study to evaluate these features. The study will have
participants performing short game inspired tasks designed to
target the new features and to evaluate their use. Compared to the
first study, which was designed to be a broad examination of the
initial design, this future study will target more specific
evaluations of the history visualization features. The study will
also include a comparison of tasks performed with and without
these new features.

Our previous research had confirmed that security is not confined
to the system itself, but rather is spread across the system and the
contexts within which it is used. There are two relevant contexts –
a physical context and a working context. The physical context of
use is face to face collaboration; Impromptu was designed not to
support distance or distributed collaboration, but rather as an
adjunct to face to face work. People talked to each other a great
deal while using Impromptu, commenting on their actions,
describing their plans, and of course talking about the work that
they were doing. The use of Impromptu as a support, rather than a
replacement, for face-to-face interaction is clearly important in the
design. The working context is slightly more problematic. File
sharing is rarely an end in itself; it is a means to support other
working activities. Impromptu, then, is expected to be used

alongside other applications. In our early trials, we noted that
these other applications would sometimes obscure the Impromptu
system, making it harder to notice changes and updates. We are
looking, therefore, at a range of ways of conveying information
about shared activities to people, not only through a dedicated
interface but also through ancillary displays that can augment
other interfaces.

To this end we are developing a “thin client” which will provide a
summary view of the contents of Impromptu as well as visual
indicators of activities and summaries of activity history. This
client is intended to run on a PDA. Future work will present this
client as well as a study of its usability.

7. CONCLUSIONS
Our approach to usable security is a holistic one. Rather than
focus on the usability characteristics of particular software
components, we aim to support the practices of security; the ways
in which people carry out their work in ways that might be more
or less secure. In our research, the emphasis is on activities where
security is not or should not be the primary activity of using
computing. That is, privacy and security have become issues in
almost all computing applications but we have followed a general
approach of how people might focus on their primary objectives
and not secondary issues.

This approach is complementary to a more traditional usability
focus; however, it provides a richer basis for understanding
security “in the wild” and for thinking more broadly about future
application developments.

In previous work, we have not previously been able to present
empirical evidence that visualization does allow people to
incorporate security concerns into their work in an effective
manner. Here, we have presented the results of an evaluation
emphasizing open- ended, naturalistic use of the testbed
application which incorporates a range of visualization features.
The initial trial data presented here bears out our hypothesis.

More usefully, perhaps, it also turns our attention to a set of
critical design criteria. We have been focused on security as a
collective practice [8]. That is, we are concerned not with one
person’s action and another, but people “doing security together.”
The emphasis on concreteness that characterized our initial
designs has proven particularly important in this regard.

The collective visibility of action that it provides in turn supports
the emergence of collective norms. Accordingly, we have been
attempting to extend this concreteness into the temporal
dimension, so that historical patterns of action can also become
visible collectively. This does, as we have noted, lead into some
complex questions as we grapple with the problems of different
historical views. We expect these to surface, too, in our ongoing
work with multiple interfaces. Our empirical results give us some
confidence in the generality of the approach, however.

While strict usability can provide important results that reduce
specific problems in the use of networked information systems
and applications, it must inherently do so within fixed terms. Our
concern is with the ways in which people appropriate information
technologies and create new ways of working. By helping
computer users to see further into the systems and networks that
support their activities, we hope to see further ourselves and
inquire into new forms of technological practice.

8. ACKNOWLEDGMENTS
We would like to thank Rogerio DePaula, Charlotte Lee and
Xianghua Ding for their invaluable assistance in performing the
study. This work was supported in part by the National Science
Foundation under awards 0541462, 0133749, 0205724, 0326105,
0527729, and 0524033, and a grant from Intel Corporation.

9. REFERENCES
[1] Jetty Java HTTP Servlet Server, Mort Bay Consulting

<http://jetty.mortbay.org/jetty/>.

[2] The Jakarta Slide Projects, <http://jakarta.apache.org/slide/>

[3] Altman, I. (1975). The Environment and Social Behavior.
Privacy Personal Space, Territory and Crowding. Monterey,
CA. Brooks/Cole Pub. Co., Inc.

[4] Altman, I. (1977). Privacy Regulation: Culturally Universal
or Culturally Specific? Journal of Social Issues, 33(3), 66-84.

[5] DePaula, R., X. Ding, et al. (2005). In the Eye of the
Beholder: A Visualization-based Approach to Information
System Security. International Journal of Human-Computer
Studies (IJHCS) Special Issue on HCI Research in Privacy
and Security, 63(1-2), 5-24.

[6] DePaula, R., X. Ding, et al. (2005). Two Experiences
Designing for Effective Security. In Proceedings of the 2005
Symposium on Usable Privacy and Security (SOUPS 2005),
Pittsburgh, PA.

[7] DiGioia, P. and P. Dourish (2005). Social Navigation as a
Model for Usable Security. In Proceedinfs of the 2005
Symposium on Usable Privacy and Security (SOUPS 2005),
Pittsburgh, PA.

[8] Dourish, P. and Anderson, K. In press. Collective
Information Practice: Exploring Privacy and Security as
Social and Cultural Phenomena. Human-Computer
Interaction.

[9] Goland, Y., E. J. Whitehead, et al. (1999). HTTP Extensions
for Distributed Authoring -- WEBDAV, Internet Engineering
Task Force: 1-94, RFC 2518.

[10] Hill, W. C., J. D. Hollan, et al. (1992). Read wear and edit
wear. In Proceedings of the ACM Conference on Human
Factors in Computing Systems, (CHI `92), Monterey,
California.

[11] Kowitz, B. and L. Cranor (2005). Peripheral Privacy
Notifications for Wireless Networks. In Proceedings of the
2005 ACM Workshop on Privacy in the Electronic Society,
Alexandria, VA.

[12] Plummer, D.C. (1986). Ethernet Address Resolution
Protocol: Or converting network protocol addresses to 48.bit
Ethernet address for transmission on Ethernet hardware,
IETF RFC826.

[13] Silva Filho, R. S., D. S. C. R. B., et al. (2003). The Design of
a Configurable, Extensible and Dynamic Notification
Service. In Proceedings of the Second International
Workshop on Distributed Event-Based Systems (DEBS'03),
San Diego, CA.

[14] Steinberg, D. and S. Cheshire (2005). Zero Configuration
Networking: The Definitive Guide, O'Reilly Media.

[15] Tatar, D., Foster, G., and Bobrow, D. 1991. Designing
for Conversation: Lessons from Cognoter. International
Journal of Man- Machine Studies, 34(2), 185-209.

