
Aligning Usability and Security: A Usability Study of
Polaris

Alexander J DeWitt
School of Information Systems, Computing and

Mathematics
Brunel University, Kingston Lane

Uxbridge. West London UB8 3PH. UK
+441895274000

Alex.Dewitt@Brunel.ac.uk

Jasna Kuljis
School of Information Systems, Computing and

Mathematics
Brunel University, Kingston Lane

Uxbridge. West London UB8 3PH. UK
+441895274000

Jasna.Kuljis@Brunel.ac.uk

ABSTRACT

Security software is often difficult to use thus leading to poor

adoption and degraded security. This paper describes a usability

study that was conducted on the software ‘Polaris’. This software

is an alpha release that uses the Principle of Least Authority

(POLA) to deny viruses the authority to edit files. Polaris was

designed to align security with usability. The study showed that

despite this aim, usability problems remained, especially when the

study participants had to make security related decisions. They

also showed apathy towards security, and knowingly

compromised their security to get work done faster. This study

also demonstrates the difficulty in achieving security and usability

alignment when the usability is a post hoc consideration added to

a developed product, rather than being integrated from the start.

The alleviation of usability problems from security software

proposed in this paper are threefold: reducing the burden on the

user to make security related decisions, counteracting user’s

apathy by ensuring that the fast way of doing things is the secure

way, and integrating security software with the operating system

throughout development.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection – Invasive

software.

General Terms
Experimentation, Security, Human Factors.

Keywords
Usable security, HCI-SEC, Polaris

1. INTRODUCTION
In November 2000, Jakob Nielson said in his online alertbox:

“Usability advocates favour making it easy to use a system …

security people favour making it hard to access a system” [13]

This quote best illustrates a long-held belief that security and

usability do not go hand-in-hand. Many software designers share

the notion that improving security necessarily degrades usability,

and vice-versa [23]. Users, on the other hand, believe that being

difficult to use is a part of being secure [23, 26]. Having higher

levels of security in practice often means extra expense in terms

of user time and effort to learn and implement these systems, as

well as possible confusion over the level of protection required for

the task at hand [6].

We wanted to assess the extent of usability problems that users

might encounter when using security software. For that purpose

we conducted a detailed usability study on a new software,

‘Polaris’ [17]. The next section provides some background

information on issues in usability of software. This is followed

with a section that introduces the Polaris software. A section on a

usability study conducted on Polaris follows. The subsequent

section reviews the results of the study. In the concluding section

recommendations on how to alleviate these problems are made

followed by the future research directions.

2. USABILITY OF SECURITY SOFTWARE
Usability has until recently played a relatively minor role in the

development of many types of software. In 1988 Boehm

introduced a software project methodology known as the spiral

model [2]. This model advocated an iterative approach in which

each stage is repeatedly evaluated and redesigned in order to

achieve a better end product. This allowed usability to be

integrated into the design of a software product from the very

start. Usability engineering is now a widely practiced activity;

however its application to security software leaves room for

improvement.

The first mention of usability and security having to work hand in
hand is generally accepted to be in the 1975 paper “The protection
of Information in Computer systems” [16]. The authors proposed
eight principles to guide the design of security products, the last of

which was ‘Psychological acceptability’. It described the

interface design to be essential, so that users routinely use the

security mechanisms in the correct way.

More recently, research into usable security leads a school of

thought that security and usability can, and indeed should be

complimentary to one-another. This research area has become

known as HCI-SEC (Human Computer Interaction and Security).

Usability is crucial because even the most secure system would

not be used much if it is too difficult to learn and cumbersome to

use so that users would rather choose to bypass it in order to get

their work done. HCI-SEC recommends that usability and security

play equal roles throughout the design and implementation of

Copyright is held by the author/owner. Permission to make digital or

hard copies of all or part of this work for personal or classroom use is

granted without fee.
Symposium On Usable Privacy and Security (SOUPS) 2006, July 12-14,

2006, Pittsburgh, PA, USA.

software [1]. This has not been the case in the past as traditional

software development teams have had either security experts, or

usability experts, but not both. More collaboration between the

two groups of experts would have been better.

Whitten and Tygar [21] performed one of the first, and most well

known experiments to test the usability of security software. Their

‘Why Johnny can’t encrypt’ study showed that Pretty Good

Privacy (PGP) encryption software, which was considered to have

a particularly good interface at the time, was not usable enough to

allow users to adequately protect their e-mails. The authors

suggested that unlike ordinary software, the usability of security

software is not entirely based on the interface design. Garfinkel

followed up Whitten and Tygar with his 2005 ‘Johnny 2’ study

[9]. This study evaluated the usability of Key Continuity

Management as a compromise on security, and found that it is a

workable model for allowing naïve users to protect their e-mail.

Balfanz and Grinter [1] evaluated the usability of deploying a

Public Key Infrastructure (PKI) in 2004. They found that even

though the technology was mature, and their participants were

well educated in computer security, the task was found to be

extremely difficult to complete, with the PKI setup requiring 38

steps, each of which forced the user to make a decision; decisions

which the users did not know how to make. Also in 2004, Yan et

al. [22] reviewed the usability of password security and

memorability, and showed that good education can help users to

make a good password choice.

HCI-SEC research frequently discussed the notion of software

transparency as a usability indicator. Gerd and Markotten [10]

recommend that security software be transparent to improve its

usability, whilst de Paula et al. [4] take the opposite stance.

Dourish et al. [5] pose the question of whether increased

transparency of security reduces the users ability to trust the

system. Straub et al. [18] propose a compromise whereby there is

maximum transparency at first, gradually allowing users to take

more and more control as they become accustomed to the

software. As we shall see in section 3, an important aim of Polaris

was to have very high transparency.

In 2002 Yee [23] introduced new guidelines for aligning security

and usability. One of the principles from these guidelines is The
Principle of Least Authority (POLA) [24]. It describes the

principle of disallowing a program access to all resources except

those that it needs to run. This is not the way that Windows and

UNIX systems work. For example, a text document opened in

Windows will give all the authority of the logged in user to the

text editor program, allowing it to traverse and edit the entire file

system. This is undesirable if a virus or Trojan takes control of the

program and leverages its power to alter or delete files on the

system. Instead, Yee recommends that the POLA principle be

used, and the user should designate the abilities he wants the

program to have. For example, if he wants to edit a file, he uses a

file open dialogue to designate edit capabilities to the program.

The program should only be able to write to that file, and that file

alone.

3. INTRODUCING POLARIS

Polaris is an alpha release software for Windows XP, developed

by researchers at HP, which aims to align security and usability.

An important point to note is that usability and security are also

blended with legacy, in that Polaris is a retrofit onto Windows,

designed to allow its millions of users to continue using their

established programs. Polaris is not a complete redesign of an

operating system, and as such must comply with design features

of Windows.

Polaris is based around the POLA principle described in section 2.

Polaris prevents any virus or malicious code from, reading,

altering, or destroying files on the system, by severely restricting

the authority of software so it can only access the files it needs to

run. Using Polaris, applications can be ‘polarized’, creating a

‘tamed’ version of that application which is immune to viruses;

these are known as ‘pets’.

The primary goal of Polaris is to make Windows safer from

viruses and malicious code, but it was specifically designed to be

highly usable as well as secure. By aligning security with

usability, the user is less likely to want to circumvent the security

system due to frustration, as the easy way should be the secure

way. The developers of Polaris had a specific usability goal; that

‘the user shouldn’t be aware that Polaris was providing

protection’ [17], in other words, it should be transparent.

By performing a usability study on Polaris, we can measure its

success in its goal to be highly usable as well as highly secure.

Successes or problems can then be identified and go on to inform

future iterations of Polaris and other software in the HCI-SEC

field. The ultimate goal is that security and usability will no

longer be two distinct fields, but will work in harmony to produce

secure software that is highly usable.

4. THE USABILITY STUDY

Our study was the first formal usability study to examine Polaris.

The findings will help inform the Beta release of Polaris, as well

as to direct research in the HCI-SEC field on improving the

synergy of security and usability in other areas such as encryption

and authentication technologies.

The methodology used in this study is similar to that employed in

the ‘Why Johnny Can’t Encrypt’ study [21], in that it uses a

laboratory test which asks users to perform tasks that include the

use of security. This study employed a combination of qualitative

and quantitative approaches. The Polaris documentation was also

included in the evaluation as it is considered a part of the software

package. Users were asked to perform some tasks to simulate the

configuration of Polaris. After this the tasks represented ordinary

computer usage in which the security features were presented as a

side-effect of the primary task. This testing scenario would be

much the same as in real situations where users would first be

required to set up the Polaris software, but thereafter, we assume,

would be more concerned with getting their work done than with

configuring security.

This study used three pilot tests to refine the testing procedure,

followed by ten participants for the main study. Virzi [19] found

that 90% of all usability problems were discovered in a study with

ten participants, and the usability expert Jakob Nielsen [14]

advocates using only five participants in a study. Using more than

ten participants would have a very low ratio of problems

discovered to resources expended.

The participants who were student volunteers from the department

of Information Systems and Computing at Brunel University, all

had a good working knowledge of computers, but no specialist

knowledge of security issues or terminology. Before the test,

Participants’ were simply told “Polaris is designed to protect you

from viruses by restricting the authority of applications to access

your files”. Participants were not given any further instruction or

training, but were able to consult the documentation in electronic

format during the test. The participants understood that they were

part of a usability study, but that they should use the PC as they

would their own.

During the tests, participants were alone in a room with a PC.

They were observed through a one-way mirror by the

experimenter in an adjoining room. Their keystrokes and screen

activity were captured and stored electronically for later analysis.

A list of the tasks users performed during the test can be found in

table 1.

 At the end of the testing, participants completed a questionnaire

to gather subjective opinions. The questionnaire measured results

on the System Usability Scale (SUS) [3]. SUS has been shown to

be a good overall guide to usability, and has been used extensively

within its originating company, Digital Equipment Co. Ltd., and

in external studies such as [15].The SUS is designed to give a

quick impression of the overall usability of a product. It consists

of ten questions rated on a Likert scale, and yields a number from

0-100, where 100 represents excellent levels of usability. SUS

was chosen for this study because it is very short and quick to

complete. It is believed that this would avoid user frustration that

can occur with long questionnaires, and as a result, ensure that the

answers given are as accurate as possible. The SUS questions

were slightly modified to replace the word ‘system’ with the word

‘software’ to relate more accurately to the study at hand.

Additionally, the SUS was augmented with five extra questions,

also rated on a Likert scale. These extra questions were designed

to assess the effectiveness of the documentation, and the results

were reviewed separately from the main SUS score. Completion

of the questionnaire was immediately followed by short semi-

structured interviews to gain more in depth information.

Participants were asked to repeat a shorter version of the test after

a period of one week, this time without the chance to refer to the

documentation. This test was to investigate the learnability of the

software. The study used usability metrics divided into three

categories to measure the usability of Polaris. These three

categories were chosen in accordance with the international

standard ISO 9241-11 [12], which defines usability as comprising

of effectiveness (the ability of users to complete tasks and goals),

efficiency (the level of resources consumed in performing tasks),

and satisfaction (a user’s subjective reactions to using the system).

Using this definition, the usability metrics used are shown below:

Effectiveness was measured by

• The number of references users make to Polaris

documentation;

• The length of time spent referring to documentation;

• The number of users who remembered how to complete goals

after a period of inactivity;

• The number of errors encountered.

Efficiency was measured by

• The time taken to complete each task;

• The number of mouse clicks taken to complete each tasks.

Satisfaction was assessed through

• Questionnaires and short semi-structured interviews to gather

subjective data.

A summary of the collected quantitative data is presented in table

2.

Table 1. Usability test broken down into tasks

Task

Task Description Purpose

1 Identify which of three applications have

been polarized

Users need to know whether the application they are using has been

polarized or not (equivalent to working in a safe environment or a non-safe

environment). This task tests how well the software informs the user of their

status.

2 Polarize Internet Explorer Test the process of making an application safe through Polaris

3 Browse an Internet banking website Observe behavior when using secure and trusted web sites

4 Check e-mails and follow hyperlinks Observe behavior when using insecure and not trusted web sites and e-mails

5 Manually add some buttons to the toolbar of

Microsoft Outlook which will let you safely

open and save e-mail attachments using

Polaris.

Test the procedure for adding functionality to safely open e-mail

attachments, which must be manually configured in the current alpha release

of Polaris.

6 Check e-mails and try out attached files Observe what security precautions are taken when trying attachments of

unknown origin.

7 Download an application from the Internet,

and try it out on your system.

Polaris includes several ways to safely try out applications, this task tests

which one users tend to take (if any) when they want to try out a potentially

dangerous application.

8 De-Polarize Microsoft Word and open a

document in the normal, unprotected version

of Word.

Test if the user can correctly go back to using the normal version of

applications after using Polaris.

5. WHAT WE LEARNED
Polaris is different from traditional anti-virus software in that once

installed it does not require updates. Once the one-off polarization

procedure is completed, the virus protection is integrated into the

application itself, and the protection offered is independent of

virus versions. This would seem to instantly offer greater

usability, however, as we will see later this effect may have been

negated by the burden on the user to make other security-related

decisions.

After the tests, all participants showed an understanding of what

Polaris was trying to achieve, but only two participants

understood the idea of having multiple pets for a single

applications. The designers of Polaris wanted total transparency,

but participants in this study did notice its presence. Polaris

required initial configuration, required users to make decisions as

to how to open files safely, and produced error messages. It is

possible that the transparency may increase over time, as the users

configure it to suit their needs, but as this study took place over a

short time scale, this cannot be determined.

Several usability problems were discovered, which are discussed

below, under each of the three metric categories used. This is

followed by brief discussions on decision making and user apathy.

5.1 Effectiveness
Some participants had difficulty in identifying whether the

application they were using had been polarized or not. This was

made evident in task 1 when three out of the ten participants were

unable to discern between polarized and normal applications. A

further two participants were unable to discern when tested in

Windows XP service pack 1, but were able to correctly identify

the difference in XP service pack 2. This is due to a bug in the

software which prevented the visual differentiation from working

in service pack 1. The remaining five participants were unable to

identify the difference immediately, but had to take long measures

such as examining the list of polarized applications in Polaris.

Many participants commented in the interviews that the visual

difference between normal and polarized applications was not

apparent enough. The participants who could not identify whether

applications had been polarized suffered from further

ramifications in later tests, because they assuming they were being

protected by Polaris, when in fact they were not.

The number of references to the documentation, and number of

errors encountered were distributed fairly equally across all the

tasks but one. In task 5 users were asked to customise the toolbar

of Microsoft outlook so that it included options to use Polaris on

e-mail attachments. Instructions on how to do this were in the

documentation, however only four out of ten users ultimately

managed to complete this task. This task required referring to the

documentation five times as often as was the average for all other

tasks, and produced three times more errors. This demonstrates

the problems encountered when users are asked to set up software

themselves. The Polaris development team is making efforts to

automate this process as much as possible for the beta release.

The average length of time spent referring to the documentation

for the first task was eight minutes 25 seconds, as users

familiarised themselves with the software. During subsequent

tasks users looked at the documentation rapidly for brief periods

of around 15 seconds, which shows their need for detailed

guidance when first using the software.

Polaris displayed error messages sometimes with no apparent

cause, and frequently with no explanation of how to resolve the

error. The participants were seen to quickly dismiss these error

messages, especially if they had already seen the same error at

least once. For example, the following error was given when

trying to open a downloaded application using the ‘Icebox’

feature of Polaris:

Application has generated an exception that could not be handled.

Process id=0xf38 (3896), Thread id=0fx3c (3900)

Click OK to terminate the application.

Click CANCEL to debug the application.

Table 2. Summary of quantitative data collected

Task

Number of participants

who successfully

completed the task (out

of ten)

Average time

taken to complete

the task

(minutes:seconds)

Average

number of

documentation

look ups

Average time spent

for each

documentation

lookup

(minutes:seconds)

Average

number# of

errors

encountered

(cumulative)

Average

number of

mouse

clicks

1 7 11:56 5 1:41 4 31

2 10 4:40 2 1:01 0 15

3 10 5:17 1 0:16 2 12

4 10 4:32 0 0:00 0 14

5 4 15:22 15 0:20 25 56

6 4 4:51 0 0:16 15 14

7 10 6:05 2 0:40 6 30

8 10 3:00 1 0:32 7 12

This could have been better communicated to the user; the

meaning of this error message is as follows:

This application cannot be opened in the Icebox. Try Polarizing it,

or if it is from a trusted source, open it without Polaris.

The participants completed a shortened version of the test after

one week in order to test the learnability of software. This time

there no documentation was made available. This test had mixed

results, with some users being able to quickly complete tasks that

others could not remember how to do, and vice-versa. Some users

commented that it would be easier if there were a context

sensitive menu from which they could choose several Polaris

options when right clicking files and hyperlinks. Polarizing an

application was a task that was widely successful, it is thought

that this is due to the interface being simple and intuitive (select

an application and click ‘Polarize’). However trying out an

application downloaded from the Internet was a task with a low

success rate. This is a task that required the participant to perform

actions above and beyond what is normally required to run a

downloaded application. These actions are not obvious, must be

repeated very frequently, take extra time and hold no apparent

advantage for the user, as they can run an application (albeit

unsafely) without any additional steps. In these situations the

participants chose to run the application in the normal way rather

than use Polaris. Learning and using Polaris presents barriers to

getting work done quickly, the benefits of which hold too little

value for the participants to put in the extra effort. Participants put

emphasis on the speed of doing things and did not like to be

slowed down. The participants’ apathy towards security and

willingness to compromise security is further discussed in section

5.5.

5.2 Efficiency
Task 5, that required customizing the Outlook toolbar, took

significantly longer (up to 15 minutes) and required up to four

times as many mouse clicks as the other tasks. Users struggled

with this task and exerted more effort than with other tasks. This

task required much more customisation of the software than any

other. We believe placing this burden on the user decreased the

usability of the software. All other tasks required an average of

between 12 and 30 mouse clicks, and took on average between

three minutes and six minutes to complete, except task one which

took 11:56, due to the initial reading of the documentation. This

seems quite reasonable considering the users had never used the

software before.

5.3 Satisfaction
The SUS scale gave a mean average score of 44.2 out of 100.

Most users indicated that the software was cumbersome to use,

and they would not like to use it frequently. The participants

showed frustration at nonsensical error messages, and thought that

the various features of Polaris were not well enough integrated.

Some participants commented that more context sensitive menus

would make Polaris easier to use.

One participant assumed that Polaris was automatically protecting

their files at all times, when in fact some of the applications they

were using were not under the protection of Polaris. This user had

a high expectation of the security software in that they didn’t

expect to have to take any explicit action in order to be protected.

5.4 Decision Making
The most serious usability problems arose when a considerable

responsibility in decision making was passed onto the user. The

most noticeable instance of this was when participants were

expected to polarize an application multiple times for different

uses. The Polaris documentation states:

“Each Pet has permission to read and write any files opened by

that Pet. So, if you've opened one spreadsheet received as spam

and another spreadsheet containing critical information, a virus

running in the spam spreadsheet could destroy the information in

the critical file. In order to prevent this attack, you may create

more than one Pet for the same application”

It should be noted that malicious files opened in pets only present

a security risk to other documents that are open in the same pet.

Polaris provides protection over the system area of the registry,

and the Windows directory, which are often targets for attack.

The participants were presented with a scenario to test their use of

multiple pets. They were given several hyperlinks to open in a

web browser. One was a secure Internet banking site they had to

log into, and the others were unknown sites on publicly editable

domains, which were engineered to appear untrustworthy.

When interviewed, just six out of the 13 total participants claimed

they knew that it was possible to create multiple pets for one

application, any only two of these knew why this would be

desirable.

One of the participants who knew why multiple pets might be

desirable created a pet browser to log into a secure internet

banking website, and after using the site, indicated that he thought

it was secure, safe, and trustworthy. He was then sent two

unknown hyperlinks via e-mail, which he believed to be insecure,

unsafe, and not trustworthy. He was aware that any malicious

code from the distrusted site may be able to affect information

from the secure banking session, but despite all of this, he still did

not create multiple pet browsers. Instead, he opened the un-trusted

links in the same browser pet as was used for the secure banking

session, thus knowingly compromising the security offered by

Polaris.

In fact, none of the participants used multiple browser pets.

5.5 Apathy to Security
When asked to download an application from a website and try it

out securely, most participants considered the goal here was

opening the application, rather than protecting their security. As

such, nine out of 11 (82%) of the participants (this includes one

pilot participant-the other two pilots were discounted due to

technical difficulties) simply double clicked the application and

opened it without Polaris, compromising the security of their PC.

Some of these then went on to use Polaris to protect their security,

but by this point the damage could have already been done, had

the application been malicious.

During the experiment the participants were asked to judge the

safety, security, and trustworthiness of the hyperlinks before

visiting them, and in the interview they were asked to do the same

after having visited the sites. The results showed that they were all

able to distinguish between sites that should and should not be

trusted. They based their decisions on previous experience, the

appearance of the e-mail that contained the hyperlink, the

reputation of the web sites (e.g. Yahoo), and by identifying the

padlock symbol in the browser for the secure site. Although the

participants had a high awareness of the security risks of the

Internet, and knew the possible consequences of their actions,

they were not any more protective of the PC’s security, in fact

they showed total apathy towards the protection of files, and

knowingly compromised their security.

The apathy encountered during the tests seems to be due to the

users’ persistent attitudes towards security. When questioned, the

two users who did know the purpose of creating multiple pets did

not put their theories into practice because they simply did not

care about the consequences. Some participants also indicated that

their data was not important to anyone but themselves, and

therefore not worth taking effort to protect. Participants also

indicated that completing the task at hand was more important

than protecting their security and it was observed on several

occasions that they would try to use Polaris, but if they were

unsuccessful in their first attempt they would bypass it to open

files without protection. The experimental conditions in which the

participants were observed may have affected their behavior, and

would agree with the data from Weirich & Sasse [20], which
showed that users will not make good security decisions unless

they believe they are at risk. In any case, given that users will

knowingly compromise their PC security, we believe it is

unreasonable to expect them to make continual security related

decisions, such as when to use a different browser pet, in

everyday life.

If the user set up the Polaris software, but subsequently did not

use it properly, as was observed in these tests, their level of

security would be comparable to ordinary Windows users. An

exception to this would be the cases where users believed they

were being protected by Polaris when in fact they were not; this

may lead to complacency over security and increased risk of

attack. If, however, Polaris is imposed on the user, for example by

a corporate security policy, they would have to work through the

usability difficulties outlined in this report. These include

confusion over when protection is being offered by Polaris,

annoying error messages, difficulty in customizing the software to

work with e-mail clients, and the inability (or lack of motivation)

to decide when to use multiple pets for a single application. These

problems would hinder the user in their work and may render the

protection offered by Polaris ineffective.

The visual distinction between polarized and non-polarized

windows needs to be much stronger, as users are likely to have a

large number of applications in a mixed state of polarization, and

need to know immediately and intuitively whether they are being

protected or not. Polaris should be more tightly integrated with the

operating system so that context sensitive menus can be used. The

need to have a separate pet for each trust category seems an

impassable problem for the average user, and one which is

inherent to the application of the POLA principle. As such, the

solution to this problem requires more thought then the simple

interface changes which can remedy other difficulties. Perhaps

each instance of an application pet could store its temporary data

in a separate disk area which is cleared after the instance is closed.

This would remove the risk of different application instances

interfering with one another’s data, and remove the need for the

user to make continual trust decisions, but at the expense of not

allowing long-lasting data such as cookies to be stored and used.

6. CONCLUSIONS
This study has found that there are usability problems even in a

product that was designed to reduce them. These problems can be

attributed to the fact that the operation of the software was not as

transparent as its designers had hoped it to be. As [6] suggests,

participants did not know when or how to make security related

decisions, so these usability problems may be alleviated by

removing the decision making responsibility from the user, thus

making the software more transparent. However, care should be

taken to only remove this power from the user where the system

can do a better job (make better decisions). Removing control

from the user at times when only they can effectively decide when

and how to share information can become problematic [4].

The participants’ willingness to compromise security was a

worrying discovery. They rationalized this behavior by declaring

the speed and ease with which tasks were completed to be more

important than the protection of their files. The participants prefer

speed to security, so this apathy may be counteracted by ensuring

that the secure way of doing things is the fastest way. It would

also be valuable to increase users’ sense of worth for their data

and increase their motivation for protecting it. It may at first seem

that education is the best way of achieving this, but previous

research has shown that education was rarely effective for such

matters. Instead, perhaps a visual indicator which shows users the

level of risk their data is under can be used. A similar function is

provided by the upcoming Internet Explorer 7, in which the

address bar changes from green to amber to red depending on the

authenticity of the website. In a similar vein, the eBay Toolbar [7]

alerts users when they are about to submit their password to an

unverified web site. It is likely that over time these alerts will

annoy users and they will learn to quickly ignore them, but the

notion of making users more aware of their actions is

commendable.

Polaris could be made faster by having pets automatically created

for programs upon installation. Furthermore, if each pet uses a

separate temporary disk area to store information, which is cleared

after the pet is closed, this could prevent the user from having to

make decisions as to when to use multiple pets, at the expense of

not facilitating permanent data such as cookies and cache files to

be used.

The study also corroborated the notion that users quickly dismiss

confusing error messages [11, 25]. They see the message as a

hindrance rather than a help, and their habit of clicking away

messages before reading them raises doubt that message boxes are

an effective way of alerting the user to an event.

The goal of making Windows security more usable, whilst

admirable, seems unlikely to be successful since it is a post-hoc

consideration. This strengthens the argument made by other HCI-

SEC researchers [e.g. 1, 8, 24], that security and usability must be

developed in unison from concept right through to development as

an integral part of the system if they are ever to align perfectly.

But even if considered at this early stage, the tradeoffs between

security and usability make for difficult design decisions, and

since it seems that no products have so far been designed in this

way, it is not possible to evaluate the efficacy of this method.

7. FUTURE WORK
More research is required to assess how to simplify and automate

complex security software, in order that fewer burdens are placed

on the user to make constant security related decisions, and to

discover which decision making points can be safely eliminated.

It is not known whether the problems associated with decision

making found in this study are also to be found with other types of

security software, nor what impact will be made on the user’s

satisfaction if the decision making responsibility is completely

removed from them. These problems also require further

investigations.

A limitation of this study is that the participants were aware that

they were in experimental conditions, and as such were under no

real risk from attack. This may have affected their motivation to

protect the PC they were using. A repeat of the study in which

participants could be induced to have a high motivation for

protecting the files as if they were their own would help address

this issue.

8. ACKNOWLEDGMENTS
We would like to thank everybody involved with the Polaris

project at Hewlett-Packard Laboratories, Palo Alto, CA, USA,

who were very helpful, and gave us the opportunity to study the

software at an early stage.

9. REFERENCES
[1] Balfanz, D., D.K. Smetters, and R.E. Grinter, In search of

usable security: Five lessons from the field. IEEE

security and privacy, 2004. 2(5): p. 19-24.

[2] Boehm, B.W., A spiral model of software development and

enhancement. Computer, 1988. 21(5): p. 61-72.

[3] Brooke, J., Sus: A quick and dirty usability scale, in Usability

evaluation in industry, P. Jordan, B. Thomas, and B.

Weerdmeester, Editors. 1996, Taylor and Francis:

London.

[4] de Paula, R., X. Ding, P. Dourish, K. Nies, B. Pillet, D.

Redmiles, J. Ren, J. Rode, and R. Silva Filho. Two

experiences designing for effective security. in

Symposium On Usable Privacy and Security. 25-34

2005. Pittsburgh, Pennsylvania: ACM Press.

[5] Dourish, P., J. Delgado de la Flor, and M. Joseph. Security as

a practical problem: Some preliminary observations of

everyday mental models. in Workshop on HCI and

Security Systems, CHI20032003. Fort Lauderdale,

Florida, USA: ACM.

[6] Dourish , P. and D. Redmiles. An approach to usable security

based on event monitoring and visualization. in 2002

Workshop on new security paradigms. 75-81 2002.

Virginia Beach, Virginia: ACM Press.

[7] eBay, Using ebay toolbar's account guard,

http://pages.ebay.com/help/confidence/account-

guard.html. 2006. Accessed on 20th April 2006.

[8] Flechais, I., A.M. Sasse, and S.M.V. Hailes. Bringing security

home: A process for developing secure and usable

systems. in Workshop on new security paradigms. 49-57

2003. Ascona, Switzerland: ACM Press.

[9] Garfinkel, S.L. and R.C. Miller. Johnny 2: A user test of key

continuity management with s/mime and outlook

express. in Symposium On Usable Privacy and Security.

13-24 2005. Pittsburgh, Pennsylvania, USA: ACM

Press.

[10] Gerd, D. and T. Markotten. User-centered security

engineering. in Nordu20022002. Helsinki, Finland.

[11] Gutmann, P., Inadvertent case study in ssl server cert

effectiveness, hcisec@Yahoogroups.com, Editor. 2005.

[12] ISO, Ergonomic requirements for office work with visual

display terminals (vdts) - part 11: Guidance on

usability. 1998, BSI.

[13] Nielsen, J., Security & human factors,

http://www.useit.com/alertbox/20001126.html. 2000.

Accessed on 20th February 2006.

[14] Nielsen, J., Why you only need to test with 5 users,

http://www.useit.com/alertbox/20000319.html. 2000.

Accessed on 29th November 2005.

[15] Roth, V., K. Richter, and R. Freidinger. A pin-entry method

resilient against shoulder surfing. in Proceedings of the

11th ACM conference on computer and communications

security. 236 - 245 2004. Washington DC, USA: ACM

Press.

[16] Saltzer, J. and M. Schroeder, The protection of information in

computer systems. Proceedings of the IEEE, 1975.

63(9): p. 1278-1308.

[17] Stiegler, M., A.H. Karp, K.-P. Yee, and M. Miller, Polaris:

Virus safe computing for windows xp. 2004, HP.

http://www.hpl.hp.com/techreports/2004/HPL-2004-

221.html

[18] Straub, T. and H. Baier. A framework for evaluating the

usability and the utility of pki-enabled applications. in

EuroPKI. 112-125 2004. Samos Island, Greece:

Springer-Verlag GmbH.

[19] Virzi, R.A., Refining the test phase of usability evaluation:

How many subjects is enough? Human factors, 1992.

34(4): p. 457-468.

[20] Weirich, D. and M.A. Sasse. Pretty good persuasion: A first

step towards effective password security for the real

world. in New Security Paradigms Workshop. 137-143

2001. Cloudcroft, NM, USA: ACM Press.

[21] Whitten, A. and J.D. Tygar. Why johnny can't encrypt: A

usability evaluation of pgp 5.0. in Proceedings of the

8th USENIX security symposium. 169–184 1999.

Washington, D.C.

[22] Yan, J., A. Blackwell, R. Anderson, and A. Grant, Password

memorability and security: Empirical results. IEEE

security and privacy, 2005. 2(5): p. 25-30.

[23] Yee, K.-P. User interaction design for secure systems. in 4th

international conference on information and

communications security. 278–290 2002. Singapore:

Springer Verlag.

[24] Yee, K.-P., Aligning security and usability. IEEE security

and privacy, 2004. 2(5): p. 48-55.

[25] Zurko, M.E., C. Kaufman, K. Spanbauer, and C. Bassett. Did

you ever have to make up your mind? What notes users

do when faced with a security decision. in Computer

Security Applications Conference. 371 - 381 2002. Las

Vegas, Nevada, USA: IEEE.

[26] Zurko, M.E. and R.T. Simon. User-centered security. in

Proceedings of the 6th new security paradigms

workshop. 27-33 1996. CA: ACM.

