
Future Decryption: Secure the Time Sensitive Information

Bessie C. Hu
Dept. of Computer Science

City University of Hong Kong
Hong Kong, China

bessiehu@cs.cityu.edu.hk

Anthony Y. Fu
Dept. of Computer Science

City University of Hong Kong
Hong Kong, China

anthony@cs.cityu.edu.hk

Xiaotie Deng
Dept. of Computer Science

City University of Hong Kong
Hong Kong, China

csdeng@cityu.edu.hk

ABSTRACT
In many real cases, private documents MUST be publicized
later, when there is a requirement to protect it before a pre-
defined time, such as testament, examination papers, bid
proposals, and financial report, etc. We want to disclose
them when it is valid time for other users to access the doc-
ument. However, none of the existing document protection
approaches can fulfill such requirement up to now. In this
paper, we proposed an approach to address such a real-world
security scenario.

1. INTRODUCTION
1.1 Motivation
Time is always an essential issue in cryptography and in-
formation protection. In digital world, given sufficient long
time, any secret can be broken under some computation
power. What is more, some of the secrets are required to
be private ONLY within a specific period. Sometimes, the
time to open the secret attracts quite a lot of public inter-
ests. Examination paper should be disclolsed to students at
the time exam starts. No student has the privilege to access
it in advance. A company’s financial report should be pub-
licized to all of its stock holders at the same time to ensure
the fairness. Other time sensitive information protection
requirements are not difficult to be found. Bid proposals
from different competitors are required to be opened only
in the bidding day. A testament is expected to be disclosed
to relative persons after its owner passes away. All these
issues have something in common: these secret documents
require to be publicized at a pre-determined time. No user
should be able to get the protected information in advance.
These potential requirements in real world motivate us to
consider it as an interesting problem. In this paper, we de-
vise a method by designing a novel algorithm to fulfill such
requirements.

1.2 Related Works

There are several approaches in the market to protect docu-
ments on different security aspects. MS Office offers a sim-
ple way[3] to protect documents from unauthorized access
using password entry. However, this build-in MS Office se-
curity feature is not really secure. Many password crackers
are available in the Internet, which can easily crack the pro-
tected documents, such as Advanced Office Password Re-
covery[2].

Rohos Company developed Teslain Encryption Pack [4] to
protect MS Office documents using a strong encryption(AES
256 bit). This software is an MS Office toolbar. To save
and encrypt a document, a password should be given. User
also needs the password to decrypt and open the encrypted
document. This approach is claimed to be very strong. It
should take 1 year to perform a Brute Force attack against
a well-chosen password at 6 symbols’ length. However, in
case the password is lost, the protected document is left to
be irretrievable.

AegisDRM provides a more flexible solution: PaM (Protector
add-in for Microsoft Office)[1]. Document authors control
not only who may access a document, but what they can
do with it, such as reading, editing, copying, etc. This ap-
proach uses a central RightServer to control all the access
rights for different users. Along with the powerful function-
ality, it requires the complete trust to RightServer. For a
company, archiving all essential documents in third party is
not preferable. PaM also provides the options of Start Time
and End Time to restrict user’s access right within a time
slot.

2. SYSTEM DESIGN

2.1 Security Requirements
Our system is designed to protect the documents before a
specific time, while it must be publicized after that time.
There are two requirements which should be achieved for
this security purpose:

1. The owner/author who knows the secret key can de-
crypt the document at any time to modify the docu-
ment as he wishes.

2. Other users who have no secret key can only open the
document after a pre-determined time, which is set by
the owner.



Most of the current solutions of document protection achieves
the first requirement. However, to the best of our knowledge,
none of them can solve the second one. For the built-in MS
Office security feature, the time an attacker is able to break
the password depends on the power of password crackers.
For Teslain Encryption Pack, the security of document relies
on choosing proper passwords. For PaM, the reliability of
system depends on the complete trustworthiness of Right-
Server. Document owners have no opportunity to control
the time effect in these systems.

Our design aims at solving these side effects by adding light
weight accessary computational effort, such that the owner
of a document can actively control the disclosing time, rather
than passively wait to be broken.

2.2 The Algorithm
The system will be installed in a device (like computer) with
computational power and storage. It also requires an off-line
time clock accessory to avoid time resetting.

Definition of System Parameters:

1. D: Document to be encrypted.

2. TE : Proposed time to encrypt the document (default
is current time).

3. TD: Proposed time to decrypt the document (a time
in future).

4. s: User Secret Value used to generate the keys for
encryption and decryption, only known by owner.

5. n: The number of encryption operations user required
between TE and TD.

6. {T0, T1, T2, ...Tn}: the time set, where T0 = TE , and
Tn = TD. ∀i ∈ {1, ..., n}, Ti − Ti−1 = (Tn − T0)/n.

7. {K0, K1, K2, ...Kn}: the key set, where K0 = Hash(s, T0).
∀i ∈ {1, ..., n},Ki = Hash(Ki−1, s, Ti).

Process of Encrypting and Decrypting Documents:

1. To encrypt D, its owner should upload D to the sys-
tem, plug in the time clock accessory to synchronize
the time, and input TE , TD, s, and n.

2. Upon receiving these parameters, system calculates
the time set {T0, T1, T2, ...Tn}, and key set {K0, K1, K2, ...Kn}.

3. System then encrypts D by calculating E(D) =

EK1(EK2(...EKn(D))). We denote E(D) as V1.

4. System stores E(D), time set {T0, T1, T2, ...Tn} as well
as key set {K0, K1, K2, ...Kn}, and destroys D,TE , TD,
s, n.

5. To decrypt E(D) and retrieve D, a user needs to plug
in the time clock accessory, and provide TE , TD, s, n
regarding to D.

6. The system will take the parameters to calculate a new
time set {T ′0, T ′1, T ′2, ...T ′n} and key set {K′

0, K
′
1, K

′
2, ...K

′
n}.

If they are matched with stored time set {T0, T1, T2, ...Tn}
and key set {K0, K1, K2, ...Kn}, system will decrypt
E(D) by calculating D = DKn(DKn−1(...DK1(E(D)))).
If they are not matched, system will find out Ti in
time set such that Ti ≤ TC < Ti+1, where TC is the
current time of time clock. Decrypted value Vi+1 =
DKi(DKi−1(...DK1(E(D)))) = EKi+1(...EKn(D)) will
be provided for the user.

This design is to ensure that author of the document who
knows TE , TD, s, n can retrieve the document at anytime.
While other users who have no knowledge of TE , TD, s, n
can only wait until TD to open the document.

2.3 Security Analysis
This design is mainly used to avoid unauthorized users to
open the document within some time period. Consider-
ing with the efficiency of symmetric key cryptography, as
well as the small key size applied, n decryption operations
are affordable for legal user. However, the cost for an at-
tacker to decrypt the document is very high, about 2k(n−i)−1

decryption functions on average(*see details below), where
TC is the current time, and TC ∈ [Ti, Ti+1), for all i ∈
{1, 2, 3, ..., n}. In fact, cost of attacker will be reduced when
current time TC is closer to TD. That also reflects the time
effect in real-world scenario that value of protected informa-
tion decreases along with the time passes away.

* Analysis of cost for attacker:
We assume that TD is a public knowledge, and an attacker
can always run decryption oracle to ask for the current de-
crypted value of D, which appears to be a random string
before TD. To obtain the interval between Ti−1 and Ti, a
positive attacker can keep requesting the decrypted value
from system, and check when the random string is changed
from Vi to Vi+1, say at Ti. He can also get Ki by brute
force to try all 2k possible values of Ki and check whether
DKi(Vi) = Vi+1. However, without the knowledge of s, the
attacker is not able to calculate Ki+1 based on Ki. Thus, to
calculate Vi+2, the attacker also needs to check all possible
2k values of Ki+1. Since Vi+2 is still a random string, and
only Vn+1 has meaningful content which is finally decrypted
document D, the attacker should try n − i rounds 2k keys
at time TC where TC ∈ [Ti, Ti+1), and on average needs to

do 2k(n−i)−1 decryption functions.

3. REFERENCES
[1] AegisDRM. protectorTM add-in for ms office.

http://www.aegisdrm.com/, 2005.

[2] Elcomsoft. Advanced office password recovery.
http://www.crackpassword.com/products/prs/integpack/aopr/,
2004.

[3] Microsoft. Ms office architecture:security features in
office. http://www.microsoft.com/technet/archive/
office/office97/reskit/office97/034.mspx?mfr=true,
1997.

[4] Rohos. Teslain encryption pack.
http://www.rohos.com/encryption-pack/, July 2005.


