
How To Login From an Internet Caf é Without Worrying
About Keyloggers

Cormac Herley and Dinei Florêncio
Microsoft Research, Redmond

ABSTRACT
Roaming users who use untrusted machines to access
password protected accounts have few good options. An
internet café machine can easily be running a keylog-
ger. The roaming user has no reliable way of determin-
ing whether it is safe, and has no alternative to typing
the password. We describe a simple trick the user can
employ that is entirely effective in concealing the pass-
word. We verify its efficacy against the most popular
keylogging programs.

1. INTRODUCTION
Keylogging is one of the most insidious threats to

a user’s personal information. Passwords, credit card
numbers, PII etc. are potentially exposed; and the in-
cidence of keyloggers in-the-wild is apparently growing
rapidly. Unlike Phishing, this is not an attack that alert
and sophisticated users can avoid. Writing a keylogger
is a trivially easy task [6, 4], there are numerous free-
ware offerings, and many of them make efforts to con-
ceal their presence. For example, they will not show up
in the Task Manager process list. There’s even a feature
comparison site [1] for those interested in the hardest
to detect keyloggers.

Home and enterprise users may be able to trust their
systems if they maintain good firewall, anti-virus and
update strategies. However roaming users have no con-
trol over what is installed. Certain internet kiosks re-
strict input access to the machine to prevent software
installation. This makes it less likely that another user
of the machine has installed a keylogger, so long as the
administrator has set good policies. But this requires
knowing that the administrator is both competent and
trustworthy. As things stand a user has no reliable way
to determine if a machine is running a keylogger or not.
In this environment is there anything a user can do to
protect themselves from the possibly catastrophic loss
of data ?

2. A SIMPLE TRICK
We assume that the machine we use has a keylogger

running. We’ll also assume that it’s not discoverable

by the user, and that we wish to primarily protect any
passwords the user types (we’re less concerned about
other typing). There are many ways of implement-
ing such a keylogger, and the details won’t concern us;
in Windows user32.dll provides event handlers that
any application can invoke to trap every keyboard and
mouse event. There are many other approaches, and it
is true for every major OS [6, 4]. Thus the keylogger
gets a string that grows in length as keys are typed. For
convenience, some keyloggers generate different strings
for the keys that are intended for different applications.
This just involves checking which window has focus at
the time of the key event. It is now very easy for the key-
logger to harvest passwords. The string of keys sent to
the browser will often contain domain names (at an in-
ternet café most people will type domains since they are
not in “favorites”), followed by userid and passwords.
For example the segment

www.hotmail.comsarahj7@hotmail.comsnoopy2

tells the logger that sarahj7@hotmail.com has pass-
word “snoopy2” at hotmail. By parsing the string for
common domains such as hotmail, paypal, amazon, fi-
delity, the task is made even easier.

At first our task may seem impossible: if the keylog-
ger sees everything how can we hide the password from
it? Rather than hide the password our approach is to
embed it in a sequence of random characters. So we
seek a way of entering random keys so that they will
be seen by the keylogger, but will not affect normal lo-
gin. The trick lies in the fact that keyloggers employ
very low level OS calls. The keylogger sees everything,
but it doesn’t understand what it sees. The browser
also sees everything, but it doesn’t use everything that
it sees: it does not know what to do with keys that are
typed anywhere other than the text entry fields, and lets
them fall on the floor. The keylogger has no easy way
to determine which keys are used by the browser and
which fall on the floor. It is very easy to record all of
the keys or mouse events (this is true both for Windows
and Linux based systems [4, 7]). It is also very easy to
determine which application had focus at the time of
the event (e.g. this key went to the browser). But it is

1



very hard to determine what the application did with
those events.

Between successive keys of the password we will enter
random keys. In the spirit of chaffing and winnowing
[5], the string that the keylogger receives will contain
the password, but embedded in so much random junk
that discovering it is infeasible. Observe that we are not
exploiting a particular feature of any particular browser:
this trick works with all versions of Internet Explorer,
Netscape Navigator and Mozilla Firefox. We are ex-
ploiting the difficulty from the OS layer of determining
how the GUI of an an application handles events. Here,
then is the method:

Navigate to the login page desired;
Type in the userid;

for (each pwd character){
Give focus to anywhere but the pwd field;
Type some random characters;
Give focus to the pwd field;
Type the next character of the pwd}

Submit;

It involves typing random characters between succes-
sive characters of the password, and changing focus to
and from the password field using the mouse. Instead
of the password snoopy2 the keylogger now gets:

hotmail.comspqmlainsdgsosdgfsodgfdpuouuyhdg2

Here a total of 26 random characters have been inserted
among the 7 characters of the actual password. In gen-
eral a total of n extra characters in a length k password
will yield so many possible passwords that attack is in-
feasible (recall the password that can only be tested by
attempting login). There are various attacks on this
method as we explain below. However, none of the key-
loggers reviewed in [1] appear to have to functionality
to defeat this simple trick.

2.1 On Screen Keyboards
Rather than have users key in their passwords some

web sites have experimented with on-screen keyboards
as a method of secure data entry. Like our trick this
forces keyloggers to do screen captures at every mouse
click or every key event. One security startup [2] is
offering on-screen keyboard login as a service offering
to banks. Again, this relies on the fact that a non-
trivial increase in the resources consumed would be re-
quired to capture these passwords. The same is not
true of the on-screen keyboard offered by Windows XP
Accessability tools (this is available under Programs-
Accessories-Accessability Tools-On Screen Keyboard).
Unfortunately this emulates keystrokes and sends them
to the application that has focus. Even the simplest
keylogger will catch all of the entries from the On screen
keyboard as though they were typed.

3. RESULTS, LIMITATIONS, DIRECTION
We tested five shareware or commercial keylogging

programs: HomeKeylogger 1.70, GhostKeylogger, KG-
BKeylogger, Spytector 1.2.8 and ProBot. None of them
captured passwords entered using the trick we describe.

It bears pointing out that this is not a universal durable
solution to the problem of keylogging. There are many
tricks in the Security space that work well when used by
a small number of people, but which will not withstand
the attacks that a large deployment can be expected to
bring. The security here comes from the fact that figur-
ing out what an application does with keys is non-trivial
for a layer of code that is below that application. Doing
a screen capture at every keystroke will reveal which of
the keys typed using this method belong to the pass-
word (the password field of the browser indicates how
many keys have been typed). But we point out that
taking a per-keystroke screenshot greatly increases the
spyware’s resource consumption (and hence it’s risk of
discovery) and harvesting of passwords becomes more
difficult to automate.

Nonetheless, the simple mechanism of embedding the
password in random keys to be extracted elsewhere is
valuable. Here we inserted the random keys manually,
and “extracted” them by knowing what the browser al-
lows to fall on the floor. We pointed out that this can
be attacked (though it suffices to give real protection to
real users today). A truly secure approach is to have
the random keys extracted somewhere other than the
untrusted machine. In [3] we demonstrate how this can
be done using a simple proxy server. The user again
enters the password embedded in random keys, and the
proxy extracts the random keys using a secret shared
between the the user and proxy. In this way we can en-
tirely avoid leaving any information about the password
on the untrusted machine. Spyware that logs the keys,
captures screenshots and monitors all network traffic
would still be unable to discover the password without
the shared secret. Details and variants are in [3].

4. REFERENCES
[1] http://www.keylogger.org.
[2] http://www.bharosa.com.
[3] D. Florêncio and C. Herley. Entering Passwords on

a Spyware Infected Machine Using a Shared Secret
Proxy. MSR Tech. Report, 2006.

[4] S. McClure, J. Scambray, and G. Kurtz. Hacking
Exposed. McAfee, fifth edition, 2005.

[5] R. Rivest. Chaffing and Winnowing:
Confidentiality without Encryption. 1998. http:
//theory.lcs.mit.edu/∼rivest/chaffing.txt.

[6] M. E. Russinovich and D. A. Solomon. Microsoft
Windows Internals. Microsoft Press, 2005.

[7] E. Skoudis and L. Zeltser. Malware: Fighting
Malicious Code. Prentice Hall, 2004.

2


