
The Battle Against Phishing:
Dynamic Security Skins

Rachna Dhamija
University of California, Berkeley

rachna@sims.berkeley.edu

J.D.Tygar
University of California, Berkeley

tygar@cs.berkeley.edu

ABSTRACT
Phishing is a model problem for illustrating usability concerns
of privacy and security because both system designers and
attackers battle using user interfaces to guide (or misguide)
users.

We propose a new scheme, Dynamic Security Skins, that allows
a remote web server to prove its identity in a way that is easy
for a human user to verify and hard for an attacker to spoof. We
describe the design of an extension to the Mozilla Firefox
browser that implements this scheme.

We present two novel interaction techniques to prevent
spoofing. First, our browser extension provides a trusted
window in the browser dedicated to username and password
entry. We use a photographic image to create a trusted path
between the user and this window to prevent spoofing of the
window and of the text entry fields.

Second, our scheme allows the remote server to generate a
unique abstract image for each user and each transaction. This
image creates a “skin” that automatically customizes the
browser window or the user interface elements in the content of
a remote web page. Our extension allows the user’s browser to
independently compute the image that it expects to receive
from the server. To authenticate content from the server, the
user can visually verify that the images match.

We contrast our work with existing anti-phishing proposals. In
contrast to other proposals, our scheme places a very low
burden on the user in terms of effort, memory and time. To
authenticate himself, the user has to recognize only one image
and remember one low entropy password, no matter how many
servers he wishes to interact with. To authenticate content from
an authenticated server, the user only needs to perform one
visual matching operation to compare two images. Furthermore,
it places a high burden of effort on an attacker to spoof
customized security indicators.

1. INTRODUCTION
Phishing is a model problem for usability concerns in privacy
and security because both system designers and attackers battle
in the user interface space. Careful analysis of the phishing

problem promises to shed light on a wide range of security
usability problems.

In this paper, we examine the case of users authenticating web
sites in the context of phishing attacks. In a phishing attack,
the attacker spoofs a website (e.g., a financial services website).
The attacker draws a victim to the rogue website, sometimes by
embedding a link in email and encouraging the user to click on
the link. The rogue website usually looks exactly like a known
website, sharing logos and images, but the rogue website serves
only to capture the user’s personal information. Many
phishing attacks seek to gain credit card information, account
numbers, usernames and passwords that enable the attacker to
perpetrate fraud and identity theft.

Data suggest that some phishing attacks have convinced up to
5% of their recipients to provide sensitive information to
spoofed websites [1]. About two million users gave
information to spoofed websites resulting in direct losses of
$1.2 billion for U.S. banks and card issuers in 2003 [2]. 2780
unique active phishing attack websites were reported in the
month of March 2005 alone [3].

It is a dreary commentary on the state of Internet security that
phishers are able to be so successful using straightforward
attacks with little effort. Though we have known about
spoofing vulnerabilities in browsers for years [4, 5], some
browser designers initially believed that these vulnerabilities
were only an academic concern that deserved little attention [5].
However, as we depend more on the Internet to conduct
business and e-commerce transactions, the need to address
spoofing vulnerabilities becomes more important.

The phishing problem shows that we as security designers have
a distance to travel. Because both attackers and designers use
user interface tools, examining this problem yields insight into
usability design for other privacy and security areas.

We examine security properties that make phishing a
challenging design problem in Section 2. In Section 3, we
discuss a user task analysis of the skills required to detect a
phishing attack. We present the design of a new authentication
prototype in Section 4, analyze its security in Section 5 and
discuss user testing in Section 6. We discuss related work in
Section 7.

2. SECURITY PROPERTIES
Why is security design for phishing hard? As we discuss in
Section 7 and elsewhere [6], a variety of researchers have
proposed systems designed to thwart phishing; yet these
systems appear to be of limited success. Here are some
properties that come into play:

1. The limited human skills property. Humans are not general
purpose computers. They are limited by their inherent skills

The authors gratefully acknowledge partial support for this work from
the National Science Foundation and the United States Postal Service.
The views expressed in this work are solely those of the authors and do
not reflect the views of the funding sponsors.

Copyright is held by the author/owner. Permission to make digital or
hard copies of all or part of this work for personal or classroom use is
granted without fee.
Symposium On Usable Privacy and Security (SOUPS) 2005,
July 6-8, 2005, Pittsburgh, PA, USA.

and abilities. This point appears obvious, but it implies a
different approach to the design of security systems. Rather
than only approaching a problem from a traditional
cryptography-based security framework (e.g., “what can we
secure?”), a usable design must take into account what humans
do well and what they do not do well.

As an example, people often learn to screen out commonly re-
occurring notices [7]. Browsers often warn users when they
submit form data over an unencrypted connection. This
warning is so common that most users ignore it, and some turn
the warning off entirely.

2. The general purpose graphics property. Operating systems
and windowing platforms that permit general purpose graphics
also permit spoofing. The implications of this property are
important: if we are building a system that is designed to resist
spoofing we must assume that uniform graphic designs can be
easily copied. As we will see in next section, phishers use this
property to their advantage in crafting many types of attacks.

3. The golden arches property. Organizations invest a great
deal to strengthen their brand recognition and to evoke trust in
those brands by consumers. Just as the phrase “golden arches”
is evocative of a particular restaurant chain, so are distinct
logos used by banks, financial organizations, and other entities
storing personal data. Because of the massive investment in
advertising designed to strengthen this connection, we must go
to extraordinary lengths to prevent people from automatically
assigning trust based on logos alone.

This principle applies to the design of security indicators and
icons as well. For example, users often implicitly place trust in
security icons (such as the SSL closed lock icon), whether they
are legitimate or not.

We revisit two properties proposed by Whitten and Tygar [8]:

4. The unmotivated user property. Security is usually a
secondary goal. Most users prefer to focus on their primary
tasks, and therefore designers can not expect users to be highly
motivated to manage their security. For example, we can not
assume that users will take the time to inspect a website
certificate and learn how to interpret it in order to protect
themselves from rogue websites.

5. The barn door property. Once a secret has been left
unprotected, even for a short time, there is no way to guarantee
that it can not been exploited by an attacker. This property
encourages us to design systems that place a high priority on
helping users to protect sensitive data before it leaves their
control.

While each of these properties by themselves seem self-evident,
when combined, they suggest a series of tests for proposed
anti-phishing software. We argue that to be fully effective,
anti-phishing solutions must be designed with these properties
in mind.

3. TASK ANALYSIS
The Anti Phishing Working Group [APWG] maintains a
“Phishing Archive” describing phishing attacks dating back to
September 2003 [9]. Reviewing these reports, we constructed a
task analysis of the methods and necessary skills for a user to
detect a phishing attack. Space limitations prevent us from
presenting the full task analysis here; it is available in a
companion report [10]. Here we summarize our findings.

We find that all of the attacks exploit the human tendency to
trust certain brands, logos and other trust indicators. These
attacks often ironically exploit a widespread sense that the
Internet is unsafe and that users must take active steps to
“protect” their financial accounts and passwords. The similarity
between phishing attacks, which claim that users must update
passwords, account activity, etc., and legitimate security
requests adds verisimilitude to phishing attacks.

The efficacy of phishing attacks is diminished when users can
not reliably distinguish and verify authoritative security
indicators. Unfortunately, current browser and related
application programs have not been carefully designed with
“security usability” in mind. As a result, users have the
following problems:

Users can not reliably correctly determine sender identity in
email messages. The email sender address is often forged in
phishing attacks. Most users do not have the skills to
distinguish forged headers from legitimate headers using
today’s email clients.

Users can not reliably distinguish legitimate email and
website content from illegitimate content that has the same
“look and feel”. If images and logos are mimicked perfectly,
sometimes the only cues that are available to the user are the
tone of the language, misspellings or the simple fact that large
amounts of personal information is being requested.

Users can not reliably parse domain names. Often they are
fooled by the syntax of a domain name through “typejacking”
attacks, which substitute letters that may go unnoticed (e.g.
www.paypai.com and www.paypal.com), or when numerical IP
addresses are used instead of text. The semantics of a domain
name can also confuse users. (e.g., users can mistake www.ebay-
members-security.com as belonging to www.ebay.com).
Legitimate organizations heighten this confusion by using
non-standard naming strategies themselves (e.g., Citibank
leg i t ima te ly uses c i t i . c o m , c i t i c a r d . c o m and
accountonline.com). Phishers have also exploited browser
vulnerabilities to spoof domain names, for example by taking
advantage of non-printing characters [11] and non-ascii
Unicode characters [12].

Users can not reliably distinguish actual hyperlinks from
images of hyperlinks. One common technique used by phishers
is to display an image of a legitimate hyperlink. When clicked,
the image itself serves as a hyperlink to a different rogue site.
Even if the actual hyperlink is displayed in the status bar or a
browser or email client, many users do not notice it.

Users can not reliably distinguish browser chrome from web
page content. Browser “chrome” refers to the interface
constructed by the browser around a web page (e.g., toolbars,
windows, address bar, status bar). It is hard for users to
distinguish an image of a window in the content of a webpage
from an actual browser window. This technique has been used
to spoof password dialogue windows, for example. Because the
spoofed image looks exactly like a real window, a user can be
fooled unless he tries to move or resize the window.

Users can not reliably distinguish actual security indicators
from images of those indicators. Many users can confuse a
legitimate SSL closed-lock icon, which appears on the status
bar, with an image of that icon in the content of a web page.
Many users simply scan for the presence of a lock icon,
regardless of where it appears. Furthermore, it is hard to train
users exactly where to look, because each browser uses a
different icon that appears in a different location of the browser

chrome. Legitimate organizations heighten this confusion by
allowing users to login from non-HTTPS pages. A form POST
from a HTTP page can be delivered securely via SSL, however,
there is no visual cue to indicate if the data is sent via SSL or
even to the correct server (e.g., Bank of America allows users to
login from its HTTP homepage. Because the page itself is not
SSL protected, the bank uses an image of a lock icon near the
form to indicate that it is secure).

Users do not understand the meaning of the SSL lock icon.
Even if users can reliably identify a legitimate SSL lock icon on
the status bar, they may be confused by what that icon actually
means. The lock icon indicates that the page the user is
viewing was delivered to the user securely. However, it does
not guarantee that data entered into that page will also be sent
securely to the server (e.g., a form on a HTTPS page may submit
data to a non-HTTPS site). Some browsers provide warnings to
inform the user when data is submitted insecurely, but many
users ignore these warnings or turn them off.

Users do not reliably notice the absence of a security
indicator. In the Firefox browser, SSL protected pages are
denoted by four indicators (a closed lock icon in the status bar,
text of the actual domain name in the status bar, a closed lock
icon in the address bar and a yellow background in the address
bar). However, in the case of non-SSL protected web pages, each
of these indicators is missing. Many users do not notice the
absence of an indicator, and it is trivial to insert a spoofed
image of that indicator where one does not exist.

Users can not reliably distinguish multiple windows and their
attributes. A common phishing technique is to place an
illegitimate browser window on top of or next to a legitimate
window. If they have the same look and feel, users may
mistakenly believe that both windows are from the same source,
regardless of variations in address or security indicators. A
user may believe that the legitimate security indicators in one
window also apply to the second rogue window. In the worst
case, a user may not even notice that a second window exists
(borderless pop-up windows make this task particularly
challenging).

Users do not reliably understand SSL certificates. Very few
users go through the effort of checking SSL certificates, and if
they do, most do not have the skills to understand the
information presented. Most users have no knowledge of
certificate authorities (CAs) and what trust in a CA implies.
Though users can specify the CA’s that they trust to sign
certificates, very few of even the most sophisticated users take
this step. Some phishers have gone through the effort of
registering a real certificate for their rogue phishing sites [13].
In this case, users can not rely simply on the presence of the
lock icon or certificate. To detect this attack, they must be able
to inspect the certificate and to distinguish the domain name of
the real website from the rogue site. There are also examples
where the CA certificate issuing process was subverted (e.g.,
Verisign issued two class 3 code-signing certificates to an
individual who fraudulently claimed to be a Microsoft
employee [14]).

Previous research has shown that even under normal
conditions, it is difficult for average users to determine whether
a browser connection is secure [15]. Our task analysis indicates
that intentional spoofing attacks make this an even more
challenging task for users.

4. OUR SOLUTION

4.1 Design Requirements
With the security properties and task analysis in mind, our goal
is to develop an authentication scheme that does not impose
undue burden on the user, in terms of effort or time. In
particular, we strive to minimize user memory requirements.
Our interface has the following properties:

• To authenticate himself, the user has to recognize only one
image and remember one low entropy password, no matter
how many servers he wishes to interact with.

• To authenticate content from a server, the user only needs
to perform one visual matching operation to compare two
images.

• It is hard for an attacker to spoof the indicators of a
successful authentication.

We use an underlying authentication protocol to achieve the
following security properties:

• At the end of an interaction, the server authenticates the
user, and the user authenticates the server.

• No personally identifiable information is sent over the
network.

• An attacker can not masquerade as the user or the server,
even after observing any number of successful
authentications.

4.2 Overview
We are developing an extension for the Mozilla Firefox
browser. We chose the Mozilla platform for its openness and
ease of modification. The standard Mozilla browser interface
and our extension are built using Mozilla's XML-based User
interface Language (XUL), a mark up language for describing
user interface elements. In this section, we provide an overview
of our solution before describing each component in depth.

First, our extension provides the user with a trusted password
window. This is a dedicated window for the user to enter
usernames and passwords and for the browser to display
security information. We present a technique to establish a
trusted path between the user and this window that requires the
user to recognize a photographic image.

Next, we present a technique for a user to distinguish
authenticated web pages from “insecure” or “spoofed” web
pages. Our technique does not require the user to recognize a
static security indicator or a secret shared with the server.
Instead, the remote server generates an abstract image that i s
unique for each user and each transaction. This image is used to
create a “skin”, which customizes the appearance of the server’s
web page. The browser computes the image that it expects to
receive from the server and displays it in the user’s trusted
window. To authenticate content from the server, the user can
visually verify that the images match.

We implement the secure Remote Password Protocol (SRP), a
verifier-based protocol developed by Tom Wu, to achieve
mutual authentication of the user and the server. We chose to
use SRP because it aligns well with users’ preference for easy-
to-memorize passwords, and it also does not require passwords
to be sent over the network. We adapted the SRP protocol to
allow the user and the server to independently generate the
skins described above. We note that all of interface techniques
we propose can be used with other underlying authentication

protocols. We also note that simply changing the underlying
protocol is not enough to prevent spoofing, without also
providing a mechanism for users to reliably distinguish trusted
and untrusted windows.

4.3 Trusted Path to the Password Window
How can a user trust the client display when every user interface
element in that display can be spoofed? We propose a solution
in which the user shares a secret with the display, one that can
not be known or predicted by any third party. To create a
trusted path between the user and the display, the display must
first prove to the user that it knows this secret.

Our approach is based on window customization [16]. If user
interface elements are customized in a way that is recognizable
to the user but very difficult to predict by others, attackers can
not mimic those aspects that are unknown to them.

Figure 1: The trusted password window uses a background
image to prevent spoofing of the window and textboxes.

Our extension provides the user with a trusted password
window that is dedicated to password entry and display of
security information. We establish a trusted path to this
window by assigning each user a random photographic image
that will always appear in that window. We refer to this as the
user’s personal image. The user should easily be able to
recognize the personal image and should only enter his
password when this image is displayed. As shown in Figure 1,
the personal image serves as the background of the window.
The personal image is also transparently overlaid onto the
textboxes. This ensures that user focus is on the image at the
point of text entry and makes it more difficult to spoof the
password entry boxes (e.g., by using a pop-up window over that
area).

As discussed below, the security of this scheme will depend on
the number of image choices that are available. For higher
security, the window is designed so that users can also choose
their own personal images. Figure 1 shows examples of the
trusted window with images chosen by the user.

We chose photographic images as the secret to be recognized
because photographic images are more easily recognized than
abstract images or text [17, 18, 19, 20, 21, 22] and because
users preferred to recognize images over text in our early
prototypes. However, any type of image or text could
potentially be used to create a trusted path, as long as the user
can recognize it. For example, a myriad of user interface
elements, such as the background color, position of textboxes
and font, could be randomly altered at first use to change the
appearance of the window. The user can also be allowed to

make further changes, however security should never rely on
users being willing to customize this window themselves.

The choice of window style will also have an impact on
security. In this example, the trusted window is presented as a
toolbar, which can be “docked” to any location on the browser.
Having a movable, rather than fixed window has advantages
(because an attacker will not know where to place a spoofed
window), but can also have disadvantages (because naïve users
might be fooled by false windows in alternate locations). We
are also experimenting with representing the trusted window as
a fixed toolbar, a modal window and as a side bar.

Unlike the shared secret schemes discussed in the Related Work
section, this scheme requires the user to share a secret with
himself (or his browser) rather than with the server he wishes to
authenticate. This scheme requires no effort on the part of the
user (or a one-time customization for users who use their own
images), and it only requires that the user remember one image.
This is in contrast to other solutions that require users to make
customizations for each server that they interact with and where
the memory burden increases linearly with each additional
server [16, 23, 24, 25].

4.4 Verifier Based Protocols
It is well known that users have difficulty in remembering
secure passwords. Users choose passwords that are meaningful
and memorable and that as a result, tend to be “low entropy” or
predictable. Because human memory is faulty, many users will
often use the same password for multiple purposes.

In our authentication prototype, our goal is to achieve
authentication of the user and the server, without significantly
altering user password behavior or increasing user memory
burden. We chose to implement a verifier-based protocol.
These protocols differ from conventional shared-secret
authentication protocols in that they do not require two parties
to share a secret password to authenticate each other. Instead,
the user chooses a secret password and then applies a one-way
function to that secret to generate a verifier, which is exchanged
once with the other party. After the first exchange, the user and
the server must only engage in a series of steps that prove to
each other that they hold the verifier, without needing to reveal
it.

In our prototype, we adapt an existing protocol, the Secure
Remote Password protocol (SRP), developed by Tom Wu [26,
27]. SRP allows a user and server to authenticate each other
over an untrusted network. We chose SRP because it i s
lightweight, well analyzed and has many useful properties.
Namely, it allows us to preserve the familiar use of passwords,
without requiring the user to send his password to the server.
Furthermore, it does not require the user (or his browser) to
store or manage any keys. The only secret that must be
available to the browser is the user’s password (which can be
memorized by the user and can be low entropy). The protocol
resists dictionary attacks on the verifier from both passive and
active attackers, which allows users to use weak passwords
safely.

Here, we present a simple overview of the protocol to give an
intuition for how it works. To begin, Carol chooses a password,
picks a random salt, and applies a one-way function to the
password to generate a verifier. She sends this verifier and the
salt to the server as a one-time operation. The server will store
the verifier as Carol’s “password”. To login to the server, the
only data that she needs to provide is her username, and the

server will look up her salt and verifier. Next, Carol’s client
sends a random value to the server chosen by her client. The
server in turn sends Carol its own random values. Each party,
using their knowledge of the verifier and the random values,
can reach the same session key, a common value that is never
shared. Carol sends a proof to the server that she knows the
session key (this proof consists of a hash of the session key
and the random values exchanged earlier). In the last step, the
server sends its proof to Carol (this proof consists of a hash of
the session key with Carol’s proof and the random values
generated earlier). At the end of this interaction, Carol is able
to prove to the server that she knows the password without
revealing it. Similarly, the server is able to prove that it holds
the verifier without revealing it.

The protocol is simple to implement and fast. Furthermore, it
does not require significant computational burden, especially
on the client end. A drawback is that this scheme does require
changes to the web server, and any changes required (however
large or small), represent an obstacle to widespread
deployment. However, there is work on integrating SRP with
existing protocols (in particular, there is an IETF standards
effort to integrate SRP with SSL/TLS [28]), which may make
widespread deployment more feasible.

One enhancement is to only require the user to remember a
single password that can be used for any server. Instead of
forcing the user to remember many passwords, the browser can
use a single password to generate a custom verifier for every
remote server. This can be accomplished, for example, by
adding the domain name (or some other information) to the
password before hashing it to create the verifier [29]. This
reduces memory requirements on the user, however it also
increases the value of this password to attackers.

We note that simply designing a browser that can negotiate a
mutual authentication protocol is not enough to stop phishing
attacks, because it does not address the problem of spoofing. In
particular, we must provide interaction mechanisms to protect
password entry, as we addressed in section 4.3, and to help the
user to distinguish content from authenticated and non-
authenticated servers, as we discuss in section 4.5.

4.5 Dynamic Security Skins
Assuming that a successful authentication has taken place, how
can a user distinguish authenticated web pages from those that
are not “secure”? In this section we explore a number of
possible solutions before presenting our own.

4.5.1 Static Security Indicators
One solution is for the browser to display all “secure” windows
in a way that is distinct from windows that are not secure. Most
browsers do this today by displaying a closed lock icon on the
status bar or by altering the location bar (e.g., Mozilla Firefox
uses a yellow background for the address bar) to indicate SSL
protected sites. For example, we could display the borders of
authenticated windows in one color, and insecure windows in
another color. We rejected this idea because our analysis of
phishing attacks suggests that almost all security indicators
commonly used by browsers to indicate a “secure connection”
will be spoofed. Previous research suggests that it is almost
impossible to design a static indicator that can not be copied
[30].

In our case, because we have established a trusted window, we
could use that window to display a security indicator (such as

an open or closed lock icon) or a message that indicates that the
current site has been authenticated. However, this approach is
also vulnerable to spoofing if the user can not easily correlate
the security indicator with the appropriate window.

Figure 2: Visual hash generated by browser.

Figure 3: The trusted password window displays the visual
hash that matches the website window borders.

Figure 4: The browser displays the visual hash as a border
around the authenticated website.

4.5.2 Customized Security Indicators
Another possibility is for the user to create a custom security
indicator for each authenticated site, or one custom indicator to
be used for all sites. A number of proposals require users to
make per site customizations by creating custom images or text
that can be recognized later [16, 23, 24, 25]. In our case, the
user could personalize his trusted window, for example by
choosing a border style, and the browser could display
authenticated windows using this custom scheme. We rejected

this idea because it requires mandatory effort on the part of the
user, and we believe that only a small number of users are
willing to expend this effort. Instead, we chose to automate
this process as described in the next section.

4.5.3 Automated Custom Security Indicators
We chose to automatically identify authenticated web pages
and their content using randomly generated images. In this
section we describe two approaches.

4.5.3.1 Browser-Generated Random Images
Ye and Smith proposed that browsers display trusted content
within a synchronized-random-dynamic boundary [30]. In
their scheme, the borders of trusted windows blink at a certain
frequency in concert with a reference window.

We suggest another approach in which we randomly generate
images using visual hashes [31]. As a visual hash algorithm,
we use Random Art [32], which has previously been proposed
for use in graphical password user authentication [22, 31].
Given an initial seed, Random Art generates a random
mathematical formula that defines a color value for each pixel
in an image. The image generation process is deterministic and
the image depends only on the initial seed.

Suppose that the browser generates a random number at the
start of every authentication transaction. This number i s
known only to the browser, and is used to generate a unique
image that will only be used for that transaction. The generated
image is used by the browser to create a patterned window
border. Once a server is successfully authenticated, the browser
presents each webpage that is generated by that server using its
own unique window border. The pattern of the window border
is simultaneously displayed in the user’s trusted window. To
authenticate a particular server window, the user only needs to
ensure that two patterns match. All non-authenticated windows
are displayed by the browser using a dramatically different,
solid, non-patterned border, so that they can not be mistaken
for authenticated windows.

There are some weaknesses in using browser window borders to
distinguish “secure” pages. First, there are several ways for
servers to override the display of borders. For example, it i s
possible for a server to open windows without any window
borders. Servers can instruct the Mozilla browser to open a
webpage without the browser chrome (a webpage that is not
wrapped in a browser window) by issuing a simple Javascript
command. Another way for servers to override the display of
borders is to use “remote XUL”. Remote XUL was designed to
allow developers to run server based applications that do not
need to be installed on the user’s local machine. Normally,
Mozilla uses local XUL files to build the browser interface.
However, the Mozilla layout engine can also use XUL files
supplied by a server to build the user interface, including
content and chrome that is specified by the server.

Another disadvantage of using window borders to mark trusted
content is that the border is often “far away”, in terms of
distance and perception, from the content of the web page that a
user must trust. In some cases, it may be desirable to identify
individual elements within a webpage as trusted. One
possibility is for the browser to modify the display of elements
within a web page (e.g., by modifying the Cascading Style
Sheet file that is applied to the web page). However this
approach interferes with website design and will require web
designers to designate standard locations where the visual hash
patterns should appear on their web pages.

We describe an approach that allows servers to mark trusted
content themselves in the next section.

Figure 5: Visual hash generated by browser and server.

Figure 6: The trusted password window displays the visual
hash that matches the website background.

Figure 8: The website displays the visual hash as a
background of a form element.

4.5.3.2 Server-Generated Random Images
In this section, we describe an approach for the server to
generate images that can be used to mark trusted content.

To accomplish this, we take advantage of some properties of the
SRP protocol (use of this specific protocol is not a requirement
for our approach). In the last step of the protocol, the server
presents a hash value to the user, which proves that the server
holds the user’s verifier. In our scheme, the server uses this
value to generate an abstract image, using the visual hash
algorithm described above. The user’s browser can
independently reach the same value as the server and can
compute the same image (because it also knows the values of
the verifier and the random values supplied by each party). The
browser presents the user with the image that it expects to
receive from the server in the trusted password window. Neither
the user nor the server has to store any images in advance, since
images are computed quickly from the seed.

The server can use the generated image to modify the content of
its webpage in many ways. The remote server can create a
border around the entire web page or can embed the image
within particular elements of the webpage. For example, when
requesting sensitive personal information from a user, a
website can embed the image in the background of a form, as
shown in Figure 8. This provides the user with a means to
verify that the information request originates from a known
party.

Websites must be carefully designed to use images in a way
that does not clutter the design or create confusion for the user.
User testing is required to determine the actual entropy of the
image generation process, that is, how distinguishable patterns
are between the images that are generated.

4.6 User Interaction
In this section we describe the process of a user logging in to
his bank website.

The first time the browser is launched, it displays the user’s
trusted password window with a randomly chosen
photographic image. The user can choose to keep the assigned
image or can select another image.

During a set-up phase, the user chooses an easy to memorize
password (it may be low entropy). The browser computes a one-
way function on this password to generate a verifier, which is
sent to the bank as a one-time operation. The verifier can be
sent to the bank online, in the same manner that user passwords
are supplied today, or through an out of band transaction,
depending on security requirements. If the verifier is sent
online, the process must be carefully designed so that the user
can not be tricked into providing it to a rogue site.

At each login, the user must recognize his personal image and
enter his username and password into the trusted window. The
password is used to generate the verifier, however neither the
password nor the verifier are sent to the bank. The only
personal data that the bank requires at each login is the
username. In the background, the client then negotiates the SRP
protocol. If authentication is successful, the trusted window
will display the image that it expects to receive from the bank.

Importantly, our browser extension also sets some simple
browser window display preferences to prevent and detect
spoofed windows. For example, the browser does not allow
any windows to be placed on top of the trusted password
window. Additionally, all windows not generated by the
authenticated server can have a dramatically different
appearance that users can specify (e.g., they will be greyed out).

The advantage from the user’s point of view is that only one
check (a visual match of two images) is required to establish
the identity of the server (or more specifically, to establish that
this is an entity that she has communicated with before). The
disadvantage to the user is that the action of matching two
images is more cumbersome than quickly scanning for the
presence of a static binary “yes/no” security indicator.
However, we expect image matching to be less cumbersome and
more intuitive to users than inspecting a certificate, for
example. We will perform user testing as described below to
discover how cumbersome this interaction technique is for
users, if users are able to perform verification through image
matching and if users can detect spoofed windows.

5. SECURITY ANALYSIS
In this section, we discuss the vulnerability of our scheme to
various attacks.

5.1 Leak of the Verifier
The user’s verifier is sent to the bank in a one-time operation.
Thereafter, the user must only supply his password to the
browser and his username to the server to login.

The server stores the verifier, which is based on the user’s
password but which is not password-equivalent (it can not be
used as a password). Servers are still required to guard the
verifier to prevent a dictionary attack. However, unlike
passwords, if this verifier is stolen (by breaking into the server
database or by intercepting it the one time it is sent to the
bank), the attacker does not have sufficient information to
impersonate the user, which makes the verifier a less valuable
target to phishers.

If a verifier is captured it can, however, be used by an attacker to
impersonate the bank to one particular user. Therefore, if the
verifier is sent online, the process must be carefully designed
so that the user can not be tricked into providing it to a rogue
site.

5.2 Leak of the Images
Our scheme requires two types of images, the personal image (a
photographic image assigned or chosen by the user) and the
generated image used to create the security skin. The user’s
personal image is never sent over the network and only
displayed to the user. Therefore, the attacker must be
physically present (or must compromise the browser) to
observe or capture the personal image.

If the generated image is observed or captured, it can not be
replayed in subsequent transactions. Furthermore, it would
take an exhaustive dictionary attack to determine the value that
was used to generate the image, which itself could not be used
to not reveal anything about the password.

5.3 Man-in-the-Middle Attacks
SRP prevents a classic man-in-the middle attack, however a
“visual man-in-the-middle” attack is still possible if an
attacker can carefully overlay rogue windows on top of the
trusted window or authenticated browser windows. As
discussed in Section 4, we have specifically designed our
windows to make this type of attack very difficult to execute.

5.4 Spoofing the Trusted Window
Because the user enters his password in the trusted password
window, it is crucial that the user be able to recognize his own

customized window and to detect spoofs. If the number of
options for personalization is limited, phishers can try to
mimic any of the available choices, and a subset of the
population will recognize the spoofed setting as their own
(especially if there is a default option that is selected by many
users). If an attacker has some knowledge of the user, and if the
selection of images is limited, the choice of image may be
predictable [33]. In addition to a large number of randomly
assigned personal images, we will encourage unique
personalization (e.g., allow the users to use their own photos).
User testing is needed to determine if users can be trained to
only enter their passwords when their own personal image
shown.

5.5 Spoofing the Visual Hashes
If this system were widely adopted, we expect that phishers will
place false visual hashes on their webpages or webforms to
make them appear secure. Users who do not check their trusted
window, or users who fail to recognize that their personal image
is absent in a spoofed trusted window, could be tricked by such
an attack. It is our hope that by simplifying the process of
website verification, that more users (especially
unsophisticated users) will be able to perform this important
step.

5.6 Public Terminals and Malware
A user can login from any location, with the browser extension
installed, by supplying his password. However, a user can not
ensure that the password window can be trusted without also
saving his personal image in the browser. In future work, we
will investigate how to protect users in locations where they are
not able to store the personal image (e.g., public terminals).

This scheme may provide some protection against pharming
attacks, where cache poisoning is used to redirect users to
rogue websites. If the user only enters his password into the
trusted window, rogue websites will not be able to capture that
information. However, this scheme does not address phishing
threats that arise from malware installed on the users machine
(e.g., keylogging software). To prevent malware attacks, an area
for future work is to develop trusted paths between the user and
the operating system.

6. USER TESTING
A successful interface should allow the user to easily login to a
website, to verify that the website is indeed the one it claims to
be and to detect spoof attempts. In this section, we describe our
design process, informal testing and our plans for formal user
testing.

6.1 Iterative Design and Informal Testing
We are using an iterative design process, where users are
invited to informally interact with mock-ups of our interface at
several stages during the design process.

Soliciting user feedback has resulted in many changes to the
interface. For example, Figure 9 displays an earlier mockup of
our prototype. In this case, user selected text was used as the
recognized element to create a trusted path to the password
window. We rejected this idea because users found it easier to
recognize images than text. Early prototypes also allowed users
to choose the random number that is provided by the browser
to the server during SRP authentication, but users were
confused by this concept.

Overall, users responded favorably to the use of a customized
window that is dedicated to password entry. In particular, users
find the use of photographic images in the trusted password
window appealing. Many users indicated a preference for
choosing their own images. Making it very easy for users to
add new images will improve security (by increasing the
workload for an attacker to spoof those images). However, i t
may also weaken security if users can be tricked in choosing a
particular image.

Users do seem to grasp the concept of a website “proving” its
identity by displaying an image, and users have been able to
successfully match images that are presented on the website to
those that appear in their trusted window.

We experimented with many trusted window designs to test for
user acceptance and resistance to spoofing. The security of the
trusted window is linked to recognition of the personal image.
To protect the generated image from being spoofed, it must also
be linked to the personal image. Users did not like trusted
window designs where the generated image was embedded in
the personal image or where the personal image was obscured.
We settled on a design where the generated image is both
transparently visible underneath the personal image and fully
visible as a border or frame around the personal image. Further
design work is needed to optimize the size of the images to
support the recognition and matching tasks, while minimizing
the size of the window. We also need to determine the best
format and placement for the window that supports current
browsing behavior, interaction with trusted websites and that
minimizes spoofing.

We adjusted the transparency of the images over the textboxes
so that they maximized visibility of the image while
minimizing interference with text entry. Some users expressed a
desire to customize the placement of the textboxes, so that
certain portions of the image are more visible.

We will continue to develop the prototype and to experiment
with interaction mechanisms (e.g., how to communicate
authentication success and failures, how to support multiple
DSS sites, how to support interaction with both trusted and
non-trusted sites, how to display images on websites and
practical details such as creating accounts, changing passwords
and how to interact with the existing password manager). We
also have a number of important questions to address about
user behavior: Can users be trained to only enter their
passwords in a separate window and only when their own
personal image shown? Can users reliably verify websites
through image matching? Can users reliably detect spoofed
windows and websites? Our formal study will investigate
whether users can perform these tasks in practice.

6.2 Formal Experimental User Study Design
Much of the evidence we have on the success of spoofing and
anti-spoofing techniques is anecdotal, and there is very little
empirical data on this subject.

We will conduct an experimental user study to evaluate the
effectiveness of image comparison and display customization
as techniques for users to identify remote servers. We are
currently designing a between-subjects study to compare our
prototype to other techniques. In the study, participants will
be asked to create an account on a remote server and to login.
We will periodically send the users email that asks them to
login to the website in order manage their funds (which is their
payment for participation in the study). Occasionally, users

will be sent to a website that spoofs the content of the site as
well as the security indicators (such as their trusted window).
Participants will be divided into three groups, one using
Dynamic Security Skins, one using a shared secret scheme and
another using only a standard SSL equipped browser (the
control condition). Effectiveness of the prototype will be
measured by the performance and error rate in account creation
and login tasks, the ability for users to authenticate legitimate
servers, the rate of detecting spoof attempts and user
satisfaction.

Additionally, we plan to release the application to the public
for widespread testing.

Figure 9: Early mockup displays a visual hash that can be
matched to the remote website

7. RELATED WORK
The rapid growth in phishing attacks has spurred calls for
solutions. A number have been proposed ranging from quick-
fix changes to more substantial redesigns. In this section, we
provide an overview of the anti-phishing proposals. We
illustrate where the proposals ignore or address the security
properties developed in Section 2 (the limited human skills
property, general purpose graphics property, the golden arches
property, the unmotivated user property and the barn door
property).

In general, attempts to solve the phishing problem can be
divided into three approaches: third party certification and
direct authentication, and phishing specific tools.

7.1 Third Party Certification

7.1.1 Hierarchical and Distributed Trust Models
Third party certification includes hierarchical trust models, like
Public Key Infrastructure (PKI), which has long been proposed
as a solution for users to authenticate servers and vice-versa. In
PKI, chains of Certificate Authorities (CAs) vouch for identity
by binding a public key to a entity in a digital certificate. The
Secure Sockets Layer (SSL) and Transport Layer Security (TLS),
its successor, both rely on PKI.

In the typical use of SSL today only the server is authenticated.
SSL also supports mutual authentication, and in theory it i s
possible for both servers and users to obtain certificates that
are signed by a trusted CA. Though it is an active area of
research, there is currently no practical scheme for widely
deploying signed personal certificates. A further challenge is

how to handle the revocation of credentials. The widespread use
of personal certificates may also raise privacy concerns due to
the personally identifiable information contained in
certificates. Even with the wide use of one-sided SSL that is in
place today (in the form of server digital certificates signed by
a trusted CA), there are problems. As we examined in our task
analysis, certificates have been falsely issued, and most users
do not have the knowledge or skill to understand digital
certificates and the delegation of trust. Therefore, SSL as it is
implemented in browsers today, ignores all of the properties
discussed in Section 2.

Other third party approaches include “web of trust” distributed
trust models (e.g., Pretty Good Privacy [34]) and the use of
third party seals to indicate trusted websites (e.g. Verisign Seal
Program [35] and TRUSTe [36]). By displaying seals as
graphics that can be easily copied, trusted seal programs ignore
the “general purpose graphics” property.

7.1.2 Trustbar
The “Trustbar” proposal is a third party certification solution,
where websites logos are certified. The authors suggest
creating a “trusted credentials area” as a fixed part of the
browser window [37]. This area can be used to present
credentials from the website, such as logos, icons and seals of
the brand, that have been certified by trusted certificate
authorities or by peers using a PGP “web of trust”. A strength
of the solution is that it does not rely on complex security
indicators. However, we must consider the “general purpose
graphics” and “golden arches” properties. Because the logos do
not change, they can be easily copied and the credentials area of
the browser can be spoofed (e.g., an attacker can draw an image
of the credentials area into the top portion of an untrusted
webpage to make it appear trusted). Therefore, careful
consideration must be given to the design of an indicator for
insecure windows so that spoofed credentials can be easily
detected. It is not clear how logos will be certified and how
disputes will be resolved in the case of similar logos.

7.2 Direct Authentication
Direct authentication approaches include user authentication
and server authentication schemes.

7.2.1 Multi-Factor User Authentication
These schemes use a combination of factors to authenticate the
user. The factors can be something you know (e.g., a password
or PIN), something you have (e.g., a token or key) or something
you are (e.g., biometrics).

7.2.1.1 AOL Passcode
America Online’s Passcode has been proposed as a phishing
defense. This program distributes RSA SecurID devices to AOL
members [38, 39] . The device generates and displays a unique
six-digit numeric code every 60 seconds, which can be used as
a secondary password during login to the AOL website. This
scheme reduces the value of collecting passwords for attackers
because the passwords can not be used for another transaction.
It does not, however, prevent a man-in-the-middle (MITM)
attack where the attacker lures a user to a spoofed AOL website
to collect both the primary and secondary passwords. These
passwords can immediately be presented by the attacker to AOL
in order to masquerade as the user. The Passcode program does
raise the bar for phishing attacks today, but we expect that if
the bar is raised everywhere, phishers will soon turn to this
type of “live” MITM attack. By not providing the user with any

means to verify the correct identity of the server, this scheme
ignores the “limited human skills” property.

7.2.1.2 Secondary SMS Passwords
Other two factor user-authentication schemes, such as issuing
secondary passwords to users via Short Message Service (SMS)
text messages on their cell phones [40] are also vulnerable to
MITM attacks. In general, two factor user authentication
schemes serve to protect the server from fraud, rather than
protecting the user from phishing attacks if they do not
provide a mechanism for the user to authenticate the server.
This ignores the “limited human skills” property.

7.2.2 Server Authentication Using Shared Secrets

7.2.2.1 Passmark and Verified by Visa
Shared-secret schemes have been proposed as one simple
approach to help users identify known servers. For example in
proposals such as Passmark [23] and Verified by Visa [25], the
user provides the server with a shared secret, such as and image
and/or passphrase, in addition to his regular password. The
server presents the user with this shared secret, and the user i s
asked to recognize it before providing the server with his
password.

The most obvious weakness of shared secret schemes is that the
server must display the shared secret in order to authenticate
itself to the user. If the secret is observed or captured, the
image can be replayed until the user notices and changes it.

In the Passmark scheme, the bank server places a secure cookie
on user machine, which must be presented at login. This
prevents a classic man-in-the middle (MITM) attack where an
attacker interposes himself between the client and the bank.
However, it does not prevent the attack in which a rogue server
instructs the browser to display two windows. The first window
displays the real login page of the legitimate bank, which has
legitimate trust indicators, such as the lock icon or the shared
secret (e.g., the passmark). A second window is also opened that
displays a webpage from the rogue server. By careful placement
of the window, an attacker can convince the user to supply his
password.

There is a much easier way to trick the user into revealing his
password and passmark. This involves spoofing the passmark
“re-registration” process. If the user wishes to login using a
new computer, or if the secure cookie has been deleted, the user
must “re-register” his passmark. In this case, the user is shown
a “passmark not shown” screen and must enter the password in
order to register. Therefore, an attacker can direct users to a
screen that claims that the cookie has been deleted or does not
exist. The legitimate error page asks users to ensure that they
have reached this page by typing in the URL by hand, however
a spoofed error page will probably not include this warning. A
number of attacks are possible that require more difficulty (e.g.,
breaking the secure cookie, physical observation of the secret
image, discovering the potential range of images and then
guessing the image). However, spoofing is likely to require the
least amount of effort to defeat the most people, and we expect
that this type of spoofing attack will become common if
systems like Passmark are widely deployed.

There is evidence that suggests that users are able to correctly
recognize a large number of images [18]. However, if a user i s
required to remember different images or passphrases for a
number of different servers, any difficulty in recognizing an
image can be exploited by an attacker. This scheme ignores the

“limited human skills”, “general purpose graphics” and
“golden arches” properties.

7.2.3 Server Authentication Using Self-Shared
Secrets
In this section, we examine web server authentication schemes
that require the user to share a secret with his own device (e.g.,
web browser) rather than with the web server.

7.2.3.1 SRD
Ye and Smith proposed “Synchronized Random Dynamic
Boundaries” to secure the path from users to their browser. [30].
This scheme uses a random number generator to set a bit that
determines whether the browser border is inset or outset. The
browser border alternates between inset and outset at a certain
frequency in concert with a reference window. A strength of
this solution is that it recognizes the “general purpose
graphics” problem. In this scheme, rogue servers can not
predict the random number that is chosen by the browser, and
therefore it is difficult to create spoof windows that blink at the
correct frequency. A weakness of this approach is that it
ignores the “limited human skills” property; dynamically
“blinking” borders may not be easily distinguished by users,
and frequent border changes are likely to be distracting. The
security depends on how many border frequency options are
available and how many users can differentiate.

7.2.3.2 YURL Petnames
In the YURL proposal, the user's browser maintains a mapping
of a public key hash to petname. When a user visits a page
identified by a YURL, the browser displays the petname that the
user previously associated with the public key hash [24]. An
untrusted site can be recognized by the absence of a
corresponding petname displayed in the browser. This is a very
simple scheme that requires a small degree of personalization
for each website. This scheme ignores the “unmotivated user
property” because security relies on users to be motivated to
customize petnames for trusted sites.

One advantage of this scheme is that the secret (the petname) is
shared with the user’s browser (rather than with the trusted
server). Careful consideration must be given to the design of
the untrusted state. That is, untrusted windows should be
clearly marked as having no petname. Otherwise, attackers can
spoof the petname display area in the browser and fool many
users.

The “limited human skills” property is also important. Because
pet names rely on user memory to recognize the secret phrase
and to associate it with the correct website, we expect that users
will choose predictable petnames. For example, many users
will choose “Amazon” for Amazon.com. The designers can
encourage users to select unique petnames to improve spoof-
resistance.

7.3 Anti-Phishing Tools

7.3.1 eBay Toolbar
The eBay Toolbar is a browser plug-in that eBay offers to its
customers to help keep track of auction sites [41]. The toolbar
has a feature, called AccountGuard, which monitors web pages
that users visit and provides a warning in the form of a colored
tab on the toolbar. The tab is usually grey, but turns green if
the user is on an eBay or PayPal site or red if the user is on a
site that is known to be a spoof by eBay. The toolbar also
allows users to submit suspected spoof sites to eBay. One

drawback to this approach is that it only applies to eBay and
PayPal websites. Users are unlikely to want to use several types
of toolbars (though it may be possible to develop a toolbar that
would work for a range of sites). The main weakness is that
there will always be a period of time between the time a spoof i s
detected and when the toolbar can begin detecting spoofs for
users. If spoofs are not carefully confirmed, denial of service
attacks are possible. This implies that some percentage of users
will be vulnerable to spoofing. For these users, “the barn door”
property implies that their personal data will not be protected.

7.3.2 SpoofGuard
SpoofGuard is an Internet Explorer browser plug-in that
examines web pages and warns users when a certain page has a
high probability of being a spoof [42]. This calculation is
performed by examining the domain name, images and links
and comparing them to the stored history and by detecting
common characteristics of spoofed websites. If adopted it will
force phishers to work harder to create spoof pages. However,
SpoofGuard needs to stay one step ahead of phishers, who can
test their webpages against SpoofGuard. New detection tests
will continuously need to be deployed as phishers become
more sophisticated.

SpoofGuard makes use of PwdHash [29], an Internet Explorer
plug-in that replaces a users password with a one way hash of
the password and the domain name. As a result, the web server
only receives a domain-specific hash of the password instead of
the password itself. This is a simple but useful technique in
addressing the “barn door property” and preventing phishers
from collecting user passwords. Both SpoofGuard and
PwdHash ignore the “general purpose graphics” property by
using a security indicator (a traffic light) that can be easily
copied.

7.3.3 Spoofstick
Spoofstick is a toolbar extension for Internet Explorer and
Mozilla Firefox that provides basic information about the
domain name of the website. For example, if the user is visiting
Ebay, the toolbar will display "You're on ebay.com". If the user
is at a spoofed site, the toolbar might instead display "You're
on 10.19.32.4". This toolbar can help users to detect attacks
where the rogue website has a domain name that syntactically
or semantically similar to a legitimate site. Unfortunately, the
current implementation of Spoofstick can be fooled by clever
use of frames when different websites are opened in multiple
frames in the browser window [43]. This ignores the “limited
human skills” property, because users must be aware of the use
of hidden frames on a webpage. Spoofstick does address the
“general purpose graphics” property by allowing users to
customize the appearance of the toolbar.

8. REFERENCES
[1] Loftesness, Scott, Responding to "Phishing" Attacks.

2004, Glenbrook Partners,
http://www.glenbrook.com/opinions/phishing.htm

[2] Litan, Avivah, Phishing Attack Victims Likely Targets for
Identity Theft, in Gartner First Take FT-22-8873. 2004,
Gartner Research

[3] Anti-Phishing Working Group, Phishing Activity Trends
Report March 2005, http://antiphishing.org/
APWG_Phishing_Activity_Report_March_2005.pdf

[4] Ed Felten, D. Balfanz, D. Dean, D. Wallach, Web Spoofing:
An Internet Con Game. Proceedings of the 20th
Information Security Conference, 1996.

[5] Bugzilla, Bugzilla Bug 22183 - UI spoofing can cause
user to mistake content for chrome (bug reported
12/20/1999, publicly reported 7/21/2004),
https://bugzilla.mozilla.org/show_bug.cgi?id=22183

[6] Rachna Dhamija, J.D. Tygar, Phish and HIPs: Human
Interactive Proofs to Detect Phishing Attacks. Proceedings
of the 2nd International Workshop on Human Interactive
Proofs (HIP05), Springer Verlag Lecture Notes in Computer
Science, 2005.

[7] Nathan Good, Rachna Dhamija, Jens Grossklags, David
Thaw, Steven Aronowitz, Deirdre Mulligan, Joseph
Konstan, Stopping Spyware at the Gate: A User Study of
Privacy, Notice and Spyware. Proceedings of the
Symposium on Usable Privacy and Security, 2005.

[8] Alma Whitten, J.D. Tygar, Why Johnny Can't Encrypt: A
Usability Evaluation of PGP 5.0. Proceedings of the 8th
Usenix Security Symposium, 1999.

[9] Anti-Phishing Working Group, APWG Phishing Archive,
http://anti-phishing.org/phishing_archive.htm

[10] Dhamija, Rachna, Detecting Phishing Attacks: A User Task
Analysis. Authentication for Humans: Designing and
Evaluating Usable Security Systems. forthcoming.

[11] Secunia, Internet Explorer URL Spoofing Vulnerability.
2004,
http://www.microsoft.com%00@secunia.com/advisories/
10395/

[12] Secunia, Multiple Browsers Vulnerable to the IDN
Spoofing Vulnerability. 2005,
http://secunia.com/multiple_browsers_idn_spoofing_test

[13] Netcraft, SSL's Credibility as Phishing Defense is Tested.
2004, http://news.netcraft.com/archives/2004/03/08/
ssls_credibility_as_phishing_defense_is_tested.html

[14] Microsoft, Microsoft Security Bulletin MS01-017, in
Erroneous Verisign-Issued Digital Certificates Pose
Spoofing Hazard. 2001,
http://www.microsoft.com/technet/security/bulletin/
MS01-017.mspx

[15] Batya Friedman, David Hurley, Daniel Howe, Edward
Felten, Helen Nissenbaum, Users' Conceptions of Web
Security: A Comparative Study. CHI 2002 Extended
Abstracts of the Conference on Human Factors in
Computing Systems, 2002: p. 746-747.

[16] J.D. Tygar, Alma Whitten, WWW Electronic Commerce and
Java Trojan Horses. Proceedings of the Second USENIX
Workshop on Electronic Commerce, 1996.

[17] A. Paivio, K. Csapo, Concrete Images and Verbal Memory
Codes. Journal of Experimental Psychology, 1969. 80(2):
p. 279-285.

[18] Haber, Ralph Norman, How we remember what we see.
Scientific American, 1970. 222(5): p. 104-112.

[19] Intraub, Helene, Presentation rate and the representation
of briefly glimpsed pictures in memory. Journal of
Experimental Psychology: Human Learning and Memory,
1980. 6(1): p. 1-12.

[20] L. Standing, J. Conezio, R. Haber, Perception and Memory
for Pictures: Single-trial learning of 2500 visual stimuli.
Psychonomic Science, 1970. 19: p. 73-74.

[21] Shepard, R., Recognition Memory for Words, Sentences
and Pictures. Journal of Verbal Learning and Verbal
Behavior, 1967. 6(156-163).

[22] Rachna Dhamija, Adrian Perrig, Deja Vu: A User Study
Using Images for Authentication. Proceedings of the 9th
USENIX Security Symposium, 2000.

[23] PassMark Security, Protecting Your Customers from
Phishing Attacks- An Introduction to PassMarks,
http://www.passmarksecurity.com/

[24] Waterken Inc., Waterken YURL Trust Management for
Humans, http://www.waterken.com/dev/YURL/Name/

[25] Visa, Verified by Visa, http://www.visa.com/

[26] Wu, T., The Secure Remote Password Protocol.
Proceedings of the 1998 Internet Society Network and
Distributed System Security Symposium, San Diego, CA,
1998: p. 97-111.

[27] Wu, T., SRP-6: Improvements and Refinements to the
Secure Remote Password Protocol. 2002: Submission to
the IEEE P1363 Working Group

[28] D. Taylor, T. Wu, N. Mavroyanopoulos, T. Perrin, Using
SRP for TLS Authentication draft-ietf-tls-srp-08. 2004,
IETF TLS Working Group: http://www.ietf.org/
internet-drafts/draft-ietf-tls-srp-08.txt

[29] Blake Ross, Collin Jackson, Nick Miyake, Dan Boneh,
John C. Mitchell, A Browser Plug-in Solution to the
Unique Password Problem. Proceedings of the 14th
Usenix Security Symposium, 2005.

[30] Zishuang Ye, Sean Smith, Trusted Paths for Browsers.
Proceedings of the 11th Usenix Security Symposium,
2002.

[31] Adrian Perrig, Dawn Song, Hash Visualization: A New
Technique to Improve Real World Security. Proceedings of
the International Workshop on Cryptographic Techniques
and E-commerce, 1999.

[32] Bauer, Anrej, Random Art,
http://gs2.sp.cs.cmu.edu/art/random/

[33] Darren Davis, Fabian Monrose, Michael Reiter, On User
Choice in Graphical Password Schemes. Proceeding of the
13th Usenix Security Symposium, 2004.

[34] Pretty Good Privacy (PGP), http://www.pgp.com/

[35] Verisign, Verisign Secured Seal Program,
http://www.verisign.com/products-services/security-
services/secured-seal/

[36] TrustE, http://www.truste.org/

[37] Amir Herzberg, Ahmad Gbara, TrustBar: Protecting (even
Naive) Web Users from Spoofing and Phishing Attacks.
2004: Cryptology ePrint Archive: Report 2004/155

[38] RSA Security, America Online and RSA Security Launch
AOL PassCode Premium Service. 2004,
http://www.rsasecurity.com/
press_release.asp?doc_id=5033

[39] RSA Security, Protecting Against Phishing by
Implementing Strong Two-Factor Authentication. 2004,
https://www.rsasecurity.com/products/securid/
whitepapers/PHISH_WP_0904.pdf

[40] Pullar-Strecker, Tom, NZ bank adds security online, in The
Sydney Morning Herald. November 8, 2004: Wellington.

[41] eBay, eBay Toolbar, http://pages.ebay.com/ebay_toolbar/

[42] Neil Chou, Robert Ledesma, Yuka Teraguchi, Dan Boneh,
John C. Mitchell, Client Side Defense Against Web-based
Identity Theft,
http://crypto.stanford.edu/SpoofGuard/#publications

[43] Core Street, Spoofstick,
http://www.corestreet.com/spoofstick/

