
Two Experiences Designing for Effective Security

Rogério de Paula, Xianghua Ding, Paul Dourish, Kari Nies, Ben Pillet,
David Redmiles, Jie Ren, Jennifer Rode and Roberto Silva Filho

Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3425

{depaula, dingx, jpd, kari, bpillet, redmiles, jie, jen, rsilvafi}@ics.uci.edu

ABSTRACT
In our research, we have been concerned with the question of how

to make relevant features of security situations visible to users in

order to allow them to make informed decisions regarding

potential privacy and security problems, as well as regarding

potential implications of their actions. To this end, we have

designed technical infrastructures that make visible the

configurations, activities, and implications of available security

mechanisms. This thus allows users to make informed choices and

take coordinated and appropriate actions when necessary. This

work differs from the more traditional security usability work in

that our focus is not only on the usability of security mechanism

(e.g., the ease-of-use of an access control interface), but how

security can manifest itself as part of people’s interactions with

and through information systems (i.e., how people experience and

interpret privacy and security situations, and are enabled or

constrained by existing technological mechanisms to act

appropriately). In this paper, we report our experiences designing,

developing, and testing two technical infrastructures for

supporting this approach for usable security.

Keywords
Privacy practices, effective security, theoretical security, usable

security, visualization, event-based architecture, peer-to-peer file-

sharing application, YANCEES, Vavoom, Impromptu.

1. INTRODUCTION
Networked computer systems have become critical not only for

conventional commercial and financial transactions, but for ad-

hoc informal, social interactions. These two uses of network

infrastructures represent the two ends of a range of possible ways

in which these infrastructures are being appropriated and utilized

as sites of organizational practices as well as people’s work and

everyday accomplishments. By the same token, they demonstrate

the range of challenges in designing and implementing usable

private and secure systems. On the one hand, institutions are

concerned with the protection of their sensitive information, and

consequently are shaping the creation of new technologies, and

policies (internal and otherwise) as well, to guarantee high levels

of secure transactions. On the other hand, individuals, often

workers of these institutions, are primarily concerned with getting

the work done, which often involves collaborating with other

individuals, disclosing information, and exchanging documents in

effectively safe manners. This poses a tension in the

implementation of usable, secure systems – the need for systems
that are more secure and those that are more useful and trustable.

One major challenge in designing private and secure system rests

on the dualism between protection and disclosure (Palen and

Dourish, 2003). Sensitive information is regarded as assets that

should be protected in order to ensure institutions’ business

advantages, but at the same time commercial and financial

transactions involve collaboration and consequently the disclosure

of this information, which might unintentionally expose valuable

assets to other parties. For the most part, this problem of making

private information secure has been tackled through the

development of “stronger” and more reliable encryption, access

control, and intrusion detection mechanisms – the user interface

thus becomes the way through which users configure these
mechanisms.

Dourish et al. (2004) conducted an empirical investigation of

people’s attitudes and practices around security and observed that

they display considerable concerns about security as well. These

concerns manifested in various ways – concern over disclosure of

sensitive information, concern about viruses, concerns about

hackers, marketers, and other threats – but at the same time they

demonstrated frustration at the difficult of managing information

and the ways that clumsy security interfaces prioritize computer

and information protection at the cost of interfering with their
work.

We have argued that the critical problem of usable security is not

simply about designing more secure systems and infrastructures,

but designing useful and trustworthy system that are effectively

secure, rather than theoretically secure (Dourish and Redmiles,

2002). The levels of effective security are almost always lower

than those of theoretical security because effective security

represents the levels that can practically be achieved in everyday

settings, rather than those that are technologically feasible. This

Copyright is held by the authors. Permission to make digital or

hard copies of all or part of this work for personal or classroom
use is granted without fee.

 Symposium On Usable Privacy and Security (SOUPS) 2005,
July 6-8, 2005, Pittsburgh, PA, USA.

distinction is the cornerstone to a clearer understanding of the

theoretical and design approaches introduced and discussed in this

paper – in particular our argument that usable security is not only

about the “usability” of security mechanisms, but a broader

concern with the ways in which users experience privacy and

security (of and through a technology) in everyday life (Dourish
and Anderson, 2005).

Hence, we are concerned with the question of how to make

relevant features of a security situation visible to users so as to

allow them to make informed decisions about potential privacy

and security problems, and about their actions and potential

implications of these actions. That is, we are interested in how to

improve privacy and security by creating conditions for users to

recognize and understand privacy and security situations, make

informed decisions, and act accordingly. This has led to the design

of technical infrastructures that make visible the configurations,

activities, and implications of available security mechanisms to

allow users to make informed choices and take coordinated and

appropriate actions when necessary. The main contribution of this

paper is thus to report on our experience in putting these
theoretical concerns into practice.

Toward this goal, we focused on two design explorations that

combine three major design principles – visualization

mechanisms, multi-source event-monitoring architecture, and the

integration of action and configuration. The first is an event

monitoring application, based on visualization and event-based

architectures. It uses a fairly simple network monitor to allow

users see network activities when they connect to a web site. The

second is a graphical interface for ad-hoc face-to-face

collaborative activities. It is a peer-to-peer file-sharing application

based on the principles of visualization and integration of action

and configuration. It allows users to directly visualize everyone

connected to the local network (the same subnet), the files being

shared and their degree of sharing, and the operations being

performed on these files, as well as to easily control the degree of

sharing of their files. These are the first steps toward better

understanding privacy and security as practical concerns, and the
implications to the design of usable security.

This paper thus offers a detailed description of those two software

applications designed to address the major goal of improving
privacy and security by making security and privacy features

“apparent” rather than “transparent.” The overall experience

has helped us attain a deeper understanding of the challenges in

designing usable private and secure infrastructures as well as the

challenges of conducting privacy and security studies – both will
be further discussed in the paper.

2. THEORETICAL APPROACH
Our theoretical approach draws empirical investigation into

everyday security practices (Dourish et al., 2004), which looked at

how people manage security as a practical, day-to-day concern,

and exploring the context in which security decisions are made. It

looked at a wide range of computer users, with different needs and

working in different settings. A number of common issues arose

in our interviews – a broad summary would be that “security,”

both as a need and a practice, extends beyond the domain of the

computer system itself. This empirical work thus provided a

foundation for our reconsideration of the problems of security to a

large degree as an interactional and situated problem – privacy

and security concerns are created and interpreted, for example, by

the interplay among one’s sharing needs and goals, the technology

at hand (and one’s understanding of it), and the physical and
social settings.

2.1 Security in the Wild
In everyday settings, we can assess and control security more

easily and more flexibly. Participation in everyday social life

inevitably involves disclosing information. When we walk down

the street, we disclose our presence to others; when we talk in

public, we run the risk that others will overhear us. However, we

can choose which path to follow, and modulate our speech so that

we are not overheard. We have ways to understand how our

information is being disclosed, and to whom, and ways of

managing or controlling that disclosure. In particular, security

management in the everyday world displays the following
properties:

• Everyday access management is continuous. That is, rather

than being restricted to discrete choices for information

management, in the everyday environment people can manage

their degree of information disclosure or withdrawal along a
continuum.

• Everyday access management is continual. That is, rather than

being restricted to particular moments in time, it is being

constantly monitored, controlled, and adjusted to the

circumstances in which we find ourselves. The content of a

conversation with a colleague may change our ideas of what is

appropriate to disclose.

• Everyday access management is co-extensive. That is, the

mechanisms by which information is shared are the same as

those by which information is withheld, and the process of

controlling disclosure is unobtrusively part of the work that

people are already engaged in. There is no separation between

providing information to others and describing information to
be kept private.

• Everyday access management is coherent. Although we may

be carrying out many tasks, and available through many

channels (visual, auditory, etc), we can achieve a coherent

effect. In contrast, even though our electronic identity is

frequently distributed across many devices (e.g. laptop,

handheld, cellphone), technological solutions treat each device
or network component individually.

• Everyday access management is contingent. The actual

requirements on disclosing and withholding information

depend on the circumstances in which people find themselves,

the settings in which they are working, and even the context of

the conversation that takes place amongst them. While we can

specify some of this in advance, the actual details are
negotiated in the moment.

• Everyday access management is comprehensible. The

structure of the world and our place within it is available at-a-
glance.

Technological solutions in general lack these properties. The

difficult of balancing sharing with privacy has two consequences

to the design of collaborative systems. First, it limits participation

– Sheehan (2002) documents non-participation in electronic

interaction because of privacy concerns. Second, it may

undermine participation because of inadvertent information

disclosure – Good and Krekelberg (2003) detail the high degree of

accidental information sharing in peer-to-peer file-sharing
applications.

This discrepancy between the everyday face-to-face interactions

and those mediated by technology can be attributed to two

features of conventional design approaches – the temporal, spatial,

and functional separations between security configuration and

information sharing interfaces, and the separation between

underlying architecture and the interface (the hiding approach for
dealing with complex interactions and systems).

2.2 Usability, Security, and Something Else
Interface design is as critical as anything else in making the

complexity of security work. Whitten and Tygar (1999) present a

usability analysis of PGP 5.0, demonstrating the difficulties that

users have in completing experimental tasks. The problems that

they uncovered were largely problems of interface design, and in

particular the poor matching between user needs and the structure

of the encryption technology provided to meet these needs. Zurko

and Simon (1996) explore similar concerns in their focus on

“user-centered security”. They are concerned that the

inscrutability of conventional security mechanisms makes it less

likely that users will employ them effectively. The approach they

outline focuses on graphical interfaces and query mechanisms to
MAP, an authorization engine.

Our concern is not, however, simply with the usability of security

mechanisms, but more broadly on how security can manifest itself

as part of people’s interactions with and through information

systems. Usability researchers have long argued that “usability”

cannot be an afterthought in information system design. Security

researchers have made the same argument about the design of

secure systems; insecure systems cannot be turned into secure

ones merely by the addition of a layer of encryption. Both of these

argue, then, that security and usability need to be understood as a
holistic design problem.

A holist design approach includes considerations of technical

nature as well as those of social, institutional, and political ones.

For example, one important related topic has been control over the

degree of security available. One of our criticisms of traditional

security systems has been their “all or nothing” approach.

However, there has been some work that attempts to characterize

degrees of security provision, as embodied by the idea of “quality

of security service” (Irvine and Levin, 2001; Spyropoulou et al.,

2000). This builds on earlier work establishing a taxonomy of

security service levels (Irvine and Levin, 1999). The fundamental

insight is that organizations and applications need to trade-off

different factors against each other, including security of various

forms and degrees, in order to make effective use of available

resources (Thomsen and Denz, 1997; Henning, 1999). While this

work is directed towards resource management rather than user

control, it begins to unpack the “security” black box and

characterize degrees and qualities of security. In a work on

privacy and security issues in a highlight institutionalized

institution, de Paula (de Paula, 2004) showed that privacy and

security concerns may arise from users’ perception of risks in

using a technology that was shaped by existing tensions between

different social groups, organizational norms, and privacy
policies.

In all these respects, we have postulated that studies on usable

security should not be limited to a focus on improving the

usability of security mechanism, but should also explore new

design approaches in which security and privacy is understood

and performed by users when carrying out their everyday

practices. In this respect, issues of privacy and security are

contingent not only on security mechanisms embedded on a

technology, but also on users’ needs and goals, and the

sociotechnical context in which their activities take place. In

addition, we focus on privacy and security issues as experienced

by users in everyday, ad-hoc face-to-face interactions with and

through technology, rather than as experienced and defined by

network administrators (which in itself is an important and
complex issue to be further studied).

2.3 Usable Security Design and a Motivating

Problem
Addressing privacy and security as a holist design encouraged us

to think more broadly about existing problems users face

nowadays as new networked, mobile systems start to permeate the

various aspects of our everyday life. For example, we have been

interested in the problem of sharing documents in collaborative,

often ad-hoc practices. We see it not only relevant to distributed

collaborative practices but also to everyday ad-hoc face-to-face

encounters. For example, with the widespread deployment of

wireless networking infrastructures, and the ubiquitous use of

mobile and handheld devices, people increasingly exchange

documents, multimedia files, and personal information through

peer-to-peer (P2P) file-sharing applications. Studies show major

problems in these systems – users find them difficult to

understand, configure, and use, which often leads to the high

degree of accidental document sharing and inadvertent disclosure

of private information (Good and Krekelberg 2003; Sheehan
2002).

Traditionally, the goal of interface design and usability practices

for security mechanism has been to make the architectural

complexity invisible and control and configuration interfaces

easier to use. These practices play critical roles in isolating the

system complexity from users, and creating interfaces for them to

effectively and efficiently interact the system, which for the most

part attempts to take all necessary actions itself to protect those

users. Such approaches that attempt to make the provision of

system security “automatic” or “transparent” essentially remove

security from the domain of the end-user. However, in situations

where only the end user can determine the appropriate use of

information or the necessary levels of security, then this explicit
disempowerment becomes problematic.

We believe that these approaches are insufficient or inadequate to

deal with privacy and security problems. The more the

architecture disappears into the background, the harder it is for

users to understand the implications of their actions and the extent

to which these actions may cause privacy and security problems.

As a consequence, when unexpected events occur (e.g., an

unexpected user joins the network and accesses shared private

information), users are often unable to make prompt and informed

decisions and take appropriate actions. In addition, these

approaches create unnecessary and ineffective disconnections

(temporal, spatial, and functional) between security configuration

(e.g., setting file permissions) and sharing interfaces, which

induce users to make premature, uninformed decisions, or to

inadvertently disclose private information in a sharing situation.

For example, users are often required to define critical privacy

and security parameters of a P2P application, for example, such as

sharing directories and control access, at the installation of the

application; or they are required to shift to a

configuration/preference dialog-box to specify certain privacy or

security policies, when they are not required to turn to the
operating system for doing so.

Our approach is concerned with the extent to which networking

systems, such as P2P file-sharing applications, can more

effectively support users’ privacy and security by exposing certain

features of the architecture to allow users to observe and

understand certain events on the network, take appropriate

actions, and better perceive the implications of their actions.

We believe that the extent to which people understand the privacy

and security issues and the implications of their decisions and

actions depends on the situation at hand as well as their

technological frames (Orlikowski, 1994) – privacy and security

concerns, from our perspective, is not a manner of actual levels of

technological protection, but a judgment of risks and payoffs

based on people’s needs and goals, and their understanding of the

available sociotechnical infrastructure available to support them.

In this respect, we have reconsidered the problem of security and

privacy in large as an interactional and situated problem (de Paula

et al., 2005).

3. DESIGN EXPLORATIONS
To further understand the implications of our theoretical

approach, we have explored three design principles: visualization

mechanisms, integration of configuration and action, and event-

based architecture. The goal of these initial design explorations

was to help us further understand how to support informed

decision-making regarding privacy and security – i.e., helping

users better understand the consequence of their actions by

making visible different aspects of network operations, such as
exchanging file or simply viewing a web site.

The underlying goal of using visualization mechanisms is to allow

users to see and assess the outcomes of their actions. By providing

dynamic feedback on relevant but hidden aspects of system

activities, such as network traffic and configurations, people are

more likely to understand the relationship between their actions

and the technology configuration through which they are

performed. It is noteworthy that this visualization does not take

the form of network monitoring that might be employed by

system administrators or network managers. Clearly, end users

neither understand nor care to understand the details of network

operation, and so we cannot assume this level of technical

expertise. Nonetheless, we find that people can understand and

appreciate the temporal and structural correlations between their

activities and the system’s behavior. The major challenge we face

is to achieve the appropriate level of expression and description.

These initial test-beds have helped start explore some of the trade-

offs and challenges in designing visualization mechanisms for

usable security that offer enough information for users’ everyday

decision-makings without overwhelming them with unnecessary

technical details. The goal is then not to represent users’ intent, or

depict particular interpretation of privacy or security events or

concerns, but to account for particular privacy and security events

and help users construct valid interpretations that reflect their
current privacy and security needs (i.e., the effective security).

As has been pointed out, we are primarily concerned with the

ways in which people express and demonstrate security needs

through everyday actions (Dourish and Anderson, 2005). The

integration of configuration and action principle reflects this goal

by unifying onto a single UI two interrelated activities, namely the

act of sharing and controlling. Conventional interfaces separate

configuration and action in both space and time, although in

everyday practice they are one and the same activity. This

separation manifests itself, in current operating system designs,

for example, in a separation between a control panel where

preferences are set, and some separate window or windows within

which the activity of the system is performed. This separation is

doubly problematic. Not only does it separate two coextensive

forms of activity (the act of “sharing” being distributed across the

preference window and the system window), but it also separates

the expression of preferences from the occasion or situation in
which those preferences are to be invoked.

These principles have thus informed the design of the two

applications that we will present next. Our initial experiment,

largely as a proof of concept, was based on two technical

platforms – Vavoom and YANCEES. The goal was to understand

the extent to which the use of visualization, event-based

architecture, and consequently the exposing of the underlying

network events and infrastructures. The second experiment

focused on the design and implementation of a prototype to

explore the concept of integrating action and configuration in

face-to-face file-sharing activities as a way of helping users better

understand system configurations and their consequence to user
actions.

3.1 Events and Visualization
The first approach we took for helping users assess the situation at

hand, and consequently make informed decisions rests on the

visualization of events on the network that are often hidden from

the end-users. As opposed to creating “agents” or “critiques” that

monitor the network, attempt to detect “abnormal” events, and

inform users, we decided to expose underlying activities so that

users can better perceive the underlying mechanisms and activities

on the network and consequently better understand the

implications of their actions. To this end, we implemented a

visualization engine, Vavoom, which was coupled with an event-

based architecture, YANCEES, which provides a high-level

notification channel. That created a test-bed for demonstrating our
assumption concerning the use of visualization as usable security.

3.1.1 Vavoom
Vavoom is a visualization engine for the Java virtual machine

(Dourish and Byttner, 2002). The first version of Vavoom was an

extension of an open source Java virtual machine implementation,

augmented to report various statistics and events about the

execution of Java class files to a separate process, responsible for

demultiplexing the events and feeding them to a range of

components capable of visualizing aspects of the run-time

behavior of the class files (e.g. their memory usage patterns, inter-

class call patterns, method invocation, instance allocation, etc.)

The key feature of this system was that it could visualize the

behavior of arbitrary unmodified class files, including Java system

components for which source was not available. Vavoom was

originally developed as a pedagogical tool, but its ability to

produce dynamic, real-time visualizations of Java software
operation clearly made it appropriate to this application.

However, the initial version of Vavoom had a number of

problems, primarily performance and compatability. These

problems both stemmed from a single design problem, which was

that Vavoom was tied to a particular JVM implementation.

Relying on the instruction stream, it was based on the interpreted

version of this JVM, which was no longer being actively

maintained, as well as having obvious performance issues itself.

For this project, we adopted a different implementation strategy

for Vavoom, creating a new custom classloader, which would

dynamically rewrite Java byteloaders at load-time, instrumenting

the class files with calls to our visualization engine. This largely

preserved the features of the original Vavoom system, including

the ability to work with arbitrary Java class files, even in the

absence of source. More to the point, though, it made the system

independent of JVM implementation, and now able to work with

high-performance JVMs such as HotSpot. One problem that this

new approach introduced was that the visualizer would operate

only over application class files, not on the system’s internal

classes, which had been loaded before our classloader could be

installed. This is relevant to our security concerns, but was a
relatively minor consideration in the initial implementation.

3.1.2 YANCEES
The second component of our system was YANCEES.

YANCEES (Silva Filho et al., 2003) is an open infrastructure for

event-based publish/subscribe distributed architectures. Event-

based infrastructures provide an effective mechanism for flexible,

loosely-coupled distributed systems integration. Note that by

event-based systems here, we refer to a particular style of

distributed software architecture in which “events” are data

structures that flow through a collective software bus to

coordinate the activity of multiple components; this is not the

event detection associated with, for instance, intrusion detection

systems (Denning, 1987; Lunt and Jagannathan, 1988).

YANCEES is the latest in a line of event-based architectures

developed by our research group; it is a versatile infrastructure

designed for flexibility in extensibility and configurability of its

functionality. It also interoperates with a range of other event-

based infrastructures such as CASSIUS (Kantor and Redmiles,

2001), Siena (Carzaniga et al., 2001) and Elvin (Segall and

Arnold, 1997), and provides a pluggable architecture which can

support additional services such as event persistence, event

sequence detection, and other features that may be needed by

different applications. Event architectures are particularly

appropriate for our approach to usable security (Dourish and

Redmiles, 2002). They provide an integration platform for sharing

and visualizing “end-to-end” security-related information.

Moreover, through event correlation and analysis, they can be

used to detect high-level patterns arising out of sequences of low-
level events.

For system developers, the YANCEES connector provides a high-

level event notification channel. This connector delivers relevant

events to interested subscribers. The subscription model defines a

subscription language and its commands – event sequence

detection and content-based filtering. The notification model

expresses how these events are delivered to the subscribers, for

example, using push or pull notification of events. The resource

model defines where the event filtering is performed, whether in

the client-side or in the server side. The event model expresses

how events are represented, for example, as plain text, as objects,

as attribute/value pairs or data structures; and the protocol model

defines different interaction mechanisms with the server, for
example, roaming protocols, federation of servers and others.

YANCEES allows programmers to implement their own

subscription languages and event representations using the

extensibility provided by XML (Extensible Markup Language).

These languages are implemented by plug-ins installed in the

Figure 1: Vavoom and YANCEES - Event visualization of Department of Justice website

publish/subscribe service. Once installed, the plug-ins are

automatically loaded by YANCEES in order to service the queries

posted by the clients, based on the subscriptions they post to the

service. YANCEES also provides access to the main components

of a publish/subscribe system (the routing engine, the publication

and subscription stubs), allowing the modification and

replacement of those strategic points. In other words, it provides

an open implementation that allows developers to define their
own extensions to the publish/subscribe model.

3.1.3 Vavoom and YANCEES Test-bed
YANCEES was used to handle all communication between

system components, including between the Vavoom JVM itself

and the visualization displays. In addition to the visualization

displays designed as part of the initial Vavoom implementation,

we created specialized displays customized to security needs,

particularly focused on web browsing as our initial scenario. The

focus of the proof-of-concept was the question: can we visualize

network activity as part of Web browsing, so that users could

become aware of the ways in which aspects of their activity might
be tracked while visiting web sites?

By tracking the bytecode patterns, this prototype monitored

network activity, maintaining a view of active connections and
indicating when they were read or written, opened or closed.

Figure 1 shows the visualizations of various connections that were

established when members of our group connected to the

Department of Justice (DoJ) website. When the users visited the

website, they expected that the target site would be the only site to

which they would be connecting. However, as shown in the

highlighted bar, the DoJ site also established a connection to the

site of Department of Homeland Security. This connection is not

evident to the users during a normal visit to the targeted site, but

our visualization showed such "hidden" connections to the users.

This visualization would help them to further assess risks and
security associated with her browsing behavior.

This particular prototype was used only for demonstrations and

internal activities; its function was not to be the basis of user

trials, but rather to demonstrate the fundamental principle, and

provide a test-bed for experimenting with implementation ideas.

Although this was a very preliminary demonstration, the

application was able to show its potential to uncover aspects of

network activity otherwise hidden, such as the use of off-site

images and “web bugs” to maintain records of web site visitor

activity. By making visible the pattern of network activity that

leads to a particular page rendering, this system could begin to

help people understand the consequences of their actions. More

than the specific application or the particular design of the visual
tools, this was the initial goal.

Although this application implemented a very elementary

awareness mechanism, it served the purpose of helping us

“visualize” aspects as well as patterns of the network activities

that are usually hidden and unexplored. It has then guided us our

future development effort toward designing more elaborate and

effective visualization mechanisms. For example, we are currently

working on a series of visualization mechanisms for representing

patterns of network activities around the concept of “normality.”

By normality, we mean that we are exploring activity patterns and

representations that help users build over time a “sense” of normal

network activities. For example, we intend to study: what is a

“usual” pattern of network connections? What is a “normal”

number of connections? Or what is a “normal” connection to a

specific host when accessing a particular web site, as the DoJ
example showed.

3.2 Integration of Action and Configuration
Impromptu was the first prototype designed and implemented to

help us evaluate the concept of integrating action and

configuration within the same GUI. It is an ad-hoc file sharing

application. Each Impromptu user can share files and decide how

the shared files can be accessed by other users. A file can be “see-

only”, which means other users will only know its existence but

cannot access its content. A file can be “read-only”, where other

users will be able to read its content but not modify it. A file can

also be “read-write”, allowing other uses to read and modify its

content. Finally, a file can be “persistent”, which means that it

will still exist for read/write access even after the original owner
has left the ad-hoc sharing group.

3.2.1 Interface Design
Impromptu’s interface is based on the principles of visualization

and direct manipulation to give users a clear representation of

“who is around,” what files are shared and in what degree, and

what actions by other users are being taken at a given moment. In

addition, the interface allows users to easily configure the sharing

levels of their files by directly moving them in and out from the

Pie GUI. In so doing, the interface integrates visualization of

events (e.g., new user joining the sharing workspace, files being

accessed, and files being make more or less available) and

configuration (e.g., user moving files to a persistent repository

before leaving the sharing workspace) –clearly implementing the

concept of the integration of action and configuration. Figure 2

depicts what a user will see when Impromptu launches. The “pie”

designates the entire ad-hoc file-sharing group in which each slice

corresponds to a single participant’s shared area of the workspace.

A participant’s own slice is represented by the darker shaded

slice. The organization and orientation of this circular region are

consistent for all users, so that informal references (e.g. to “left”,

“right,” or “top corner”) can be oriented towards by all (Tatar et

al., 1991). Files, represented by labeled dots, are placed in and

around the circular region. Each area is tagged with a unique color

for each user; this color is also associated with that user’s files,

and with indicators of that user’s activity.

The interface is separated into multiple concentric regions; the

metaphor corresponds to the idea that the closer the files are to the

center, the “more shared” they are. Various degrees of sharing

might be implemented. The particular mappings we have been

using are that files outside the circle are not shared at all, but

available to the local user; files in the outer region are visible but

not readable or writable to others; files in the next region are

readable but not writable; in the next, readable and writable; and
in the center, readable, writable, and available persistently.

Persistent access means that, even when someone leaves the

session, his or her files remain accessible to others in the group;

by default, files are non-persistent, meaning that when the user

leaves the session, their files will disappear from others’

interfaces. The provision of persistence serves two functions here,

one pragmatic and one research-oriented. The pragmatic

motivation is that persistence is a necessary feature of many of

our usage scenarios (e.g. information sharing in group meetings);

the research motivation is that we wanted to be sure that our

different “sharing degrees” did not simply correspond to

conventional file access rights. File access is managed by moving

the files between the levels. People can only control the
accessibility of their own files.

The dots that represent files do more than simply convey the

position of an object in the Pie; they also represent activities over

those files. Remote file accesses to local files cause a ring around

the icons for the files to blink in colors that indicate the identity of

the user accessing them. This dynamic visual display draws

attention to current activity and allows for a quick overview of

access patterns. In so doing, it implements the concept of

integration of action and configuration and of dynamic
visualization of activity.

3.2.2 System Implementation
Internally, the Impromptu application consists of the following

components: the graphical user interface, the Jetty web server, the

Impromptu WebDAV proxy, and the Slide WebDAV repository.

The secure WebDAV connector and the YANCEES event

notification connector connect these components together. The

architecture is depicted in Figure 3. Jetty and Slide are external

open source software components. The user interface component,

the proxy component, the secure WebDAV connector, and the
YANCEES connector (see above) are developed by us.

Jetty serves as a dynamic application server that allows an add-on

component to decide what a response will be when Jetty receives

a request. Slide is such an add-on component that provides

WebDAV repository support. WebDAV (Goland et al., 1999) is

an HTTP extension that provides Internet-scale resource storage,

retrieval, and modification capability. It is an open standard,

easily available in different platforms, and is thus chosen as the
foundation storage for the ad-hoc file sharing application.

Each participant stores his/her files in his/her own Slide server.

However, this local storage is not directly seen by the participant.

A participant only interacts with the Impromptu proxy server,

using the Pie GUI depicted in Figure 2. The proxy provides an

illusion of a unified, shared file storage workspace. When an

Impromptu proxy receives a file operation request, it determines

whether the request is directed at a local file or a remote file

belonging to another participant. In the former case, it retrieves

the file from the local Slide server, using a standard WebDAV

request. In the latter case, it performs the operation against the

remote Impromptu proxy, which will accomplish the operation
using its own local Slide server.

The implementation of the GUI is based on SVG (Scalable Vector

Graphics), a W3C recommendation, which defines an XML

grammar for rich 2D graphics including features such as

transparency, arbitrary geometry, filter effects (shadows, lighting

effects, etc.), script and etc. Since the graphics are vector-based,

they will not lose any quality if they are zoomed or resized, which

is desirable for Impromptu to run on different devices with a

variety of screen sizes. The Batik toolkit we used in our

implementation enables us to generate, parse, view or convert

SVG contents using Java technology. Impromptu uses then

YANCEES, configured for a peer-to-peer setting, to maintain the

client Pie views in sync by informing each client of events taking
place on the others.

Figure 2: Impromptu interface - Six person file-sharing collaboration

We designed this application for a relatively-security-friendly, ad-

hoc file-sharing environment. The participants are not malicious,

and the major risk in such an environment is unintentional

disclosure of information. In traditional file sharing applications,

when a user operates on files, it is not always clear to the user

what files are shared, how they might be accessed and changed,

and who is currently reading and changing files. However, we

want to avoid requiring users to use a rather complex

configuration operation to express such intentions. Such

complexity might be overwhelming to the user, and thus affect

usability. In summary, the security goals for the Impromptu file

sharing application are 1) make security visible; 2) ease security
configuration.

3.2.3 Impromptu Test-bed
We conducted a series of cognitive walkthrough activities within

our research group in order to flag some initial interface problems.

CW offered important information concerned the “usability” of

Impromptu, but provided limited insights with respect to our

primary concern with how users’ privacy and security could be

demonstrated through and supported by the application. We then

conducted a series of informal pilot studies where we observed

pairs of individuals (drawn from our department) collaborating.

Each pair was working on a self-selected task. Thus, they were

highly motivated to complete tasks given their realism, and tasks

varied in structure and type of collaboration required. Sessions

lasted one hour each. Our observations underline the necessity of

integrating action and configuration, as well as the usefulness of
providing a real time visualization of activity.

Four particular issues stand out from these initial usage
experiences.

First, we noted that each group that tried Impromptu used it in a

different way. Some groups adopted highly integrated working

style, while others used Impromptu more as a means to coordinate

separate activities. Some shared information to the highest degree,
while others used the sharing levels more selectively.

Second, the integration of action and configuration creates a

strong sense of embodiment and sharing. People respond to the

shared space of the Impromptu interface as a shared and active

space, and the objects within it as truly shared and seamlessly
available

Third, we were pleased to see that the interface provides people

with a strong sense of the presence of others. During some of our

trials, we unexpectedly joined a session in progress, so that

suddenly a new user would appear in the interface. This arrival

was clearly visible in the interface, and was apparent to people

glancing at the Impromptu window. Further, people’s responses

indicated that they were, first, clearly aware of the consequences

for their own activities, and, second, able to take action in

response by, for example, taking shared files and moving them to

a read-only space to prevent the new arrival from gaining full
access to the content of their work.

Fourth, we can see that it is important to understand aspects of the

context in which the system may be put to use. There are two

relevant contexts – a physical context and a working context. The

physical context of use is face to face collaboration; Impromptu

was not designed to support distance or distributed collaboration

(although it does not preclude it), but rather as an adjunct to face

to face work, permitting people to share information more easily

than they might do using other physically co-present mechanisms

(e.g. flash drives.) People talked to each other a great deal while

using Impromptu, commenting on their actions, describing their

plans, and of course talking about the work that they were doing.

The use of Impromptu as a support, rather than a replacement, for

face-to-face interaction is clearly important in the design. The

working context is slightly more problematic. File sharing is

rarely an end in itself; it is a means to support other working

Figure 3: Impromptu Architecture

activities. Impromptu, then, is expected to be used alongside other

applications. In our early trials, we noted that these other

applications would sometimes obscure the Impromptu interface,

making it harder to notice changes and updates. We are looking,

therefore, at a range of ways of conveying information about

shared activities to people, not only through a dedicated interface

but also through ancillary displays that can augment other
interfaces.

4. DISCUSSION AND FUTURE

DIRECTIONS
Although this is an ongoing research, it is still useful to reflect on

some of the experiences we gained designing, developing, and

having others as well as ourselves using the applications. We have

obtained promising results from these experiences that point to

future design and development directions and activities. We were

also able to observe some challenges in the performance of

evaluative research in the areas of privacy and security in the
context of everyday uses of technologies.

We have so far developed and explored the two approaches for

usable security separately – visualization of network events and

the integration of action and configuration – but our goal is to

integrate them. For example, our informal study with Impromptu

has shown that because of the seamlessness of the interface, users

got drawn into their activities and were unable to perceive

activities on the network, such as new users joining the

workspace, when the application was hidden behind another

application. So, we are now exploring new forms of awareness

visualization that will allow users to perceive activities on the

network. A well-discussed problem with awareness mechanisms

is the tension between notification of important events and

disruption. We do not intend to create yet another notification

system, but to take advantage of the convergence of new wireless

hand-held devices. For example, we are exploring the use of a

PDA or a cell phone running Impromptu in support of activities

taking place on one’s notebook – while users carry out their

collaborative tasks on their computer, they will be able to change

sharing levels of their files through the PDA as well as monitor

who else might be “around.” By the same token, we are exploring

the use of the environment as a situated and continuous awareness

mechanism. The goal is to create mechanisms that increasingly

match our everyday physical interactions with privacy and
security (as described in Section 2).

The integration of the two applications will require extending and

improving existing technological infrastructures. YANCEES is

currently underutilized by Impromptu. The use of YANCEES as a

configurable and extensible service allows the infrastructure to be

customized to different requirements and permits the

incorporation of future extensions that is necessary for our

approach for usable security as well as the integration of various

sources of awareness mechanisms. For example, YANCEES can

be configured with fewer resources in order to fit in a Palm-size

computer. It can also incorporate new commands in the

subscription language, such as sequence detection, abstraction and

other event processing features, allowing a better manipulation of
events, which may be necessary for more sophisticated clients.

Impromptu at the moment implements a single security model –

the visualization of user presence on the interface and the ability

to directly control the sharing levels of files on the workspace.

There may be a need in the future for implementing other models

of privacy and security that will allow us to study other forms of

privacy and security practices. We plan to implement different

security policies and privacy models by extending YANCEES

security models. This will allow us not only to further study the

issues of designing effective private applications but also to

evaluate the underlying technical infrastructure developed in this

research project.

The ability of implementing and exposing different privacy and

security configurations and policies will also allow us to further

understand the implications of exposing different aspects of the

underlying technical infrastructure. We intend then to further

explore the ways in which users construct trust with each other as
well as with the system itself.

The design and implementation of the Impromptu evaluation has

also offered relevant insights about the limitations of existing

standard usability evaluation methodologies and challenges in

conducting studies on privacy and security practices that are

mediated by networked applications. In particular, one major

challenge that became clearly evident was the well-known tension

between studying users in naturalistic settings and more controlled

settings. This tension nevertheless assumes a more critical

dimension in settings of privacy and security as we have

conceptualized in this paper – an interactional and situated

problem. For example, we were concerned with the extent that

users were able to attune to the fact that outsiders inadvertently

joined the workspace. This use of deception is more applicable in

more controlled situations, such as in lab-experiments, rather than

ad-hoc spontaneous interactions. Our challenge nevertheless lies

in our understanding that privacy and security problems only
reveal themselves in the situation in which they unfold.

5. CONCLUSION
Although technical infrastructures, such as wireless ad-hoc

networks over 802.11b or Bluetooth, are becoming stable,

common component of everyday interactions, their current

implementations and more important the integration of these

various components are still awkward, hard to use, and difficult to

understand. This has serious implication to the privacy and

security of these systems. Usability research and practices play a

critical role in addressing this problem, as well as new ways of

thinking about the problem itself and new approaches for the
design of these systems.

In this paper, we offered an alternative theoretical and design

approach for usable security. We started with a question: to what

extent will making relevant features of security situations apparent

to users allow them to make more informed decisions about

potential privacy and security problems, and about their actions
and potential implications of these actions?

To address that, we designed and implemented two applications

that make visible the configurations, activities, and implications of

available security mechanisms. The goal was to allow users to

make informed choices and take coordinated and appropriate

actions when necessary. This work differs from the more

traditional security usability work in that our focus is not simply

on the usability of security mechanism, but how security can

manifest itself as part of people’s interactions with and through

information systems.

Our experiences designing, developing, and testing these two

technical infrastructures have offered promising directions for

future design, implementations, and research on usable security.

In so doing, we hope to improve privacy and security, not

necessarily by hiding complexity but by creating conditions for
users act appropriately.

6. ACKNOWLEDGEMENTS
This work was supported in part by the National Science

Foundation under awards 0133749, 0205724 and 0326105, and by
a grant from Intel Corporation.

7. REFERENCES
Carzaniga, A., Rosenblum, D. S., and Wolf, A. L. 2001. Design

and Evaluation of a Wide-Area Event Notification Service. ACM

Transactions on Computer Systems, August, Vol. 19 Issue 3, pp.
332-383.

Denning, D. 1987. An Intrusion-Detection Model. IEEE Trans.
Software Engineering, 13(2), 222-232.

de Paula, R. (2004). The construction of usefulness: How users

and context create meaning with a social networking system.

Unpublished Unpublished Ph.D. Dissertation, University of
Colorado at Boulder, Boulder, CO.

de Paula, R., Ding, X., Dourish, P., Nies, K., Pillet, B., Redmiles,

D., et al. (2005). In the eye of the beholder: A visualization-base

approach to information system security. International Journal of
Human-Computer Studies (to appear).

Dourish, P., & Anderson, K. (2005). Privacy, security… and risk

and danger and secrecy and trust and identity and morality and

power: Understanding collective information practices: Irvine,

CA: Institute for Software Research. Technical Report UCI-ISR-
05-1.

Dourish, P. and Byttner, J. (2002). A Visual Virtual Machine for

Java Programs: Exploration and Early Experiences. Proceedings

of the ICDMS Workshop on Visual Computing (Redwood City,
CA).

Dourish, P., Grinter, R., Delgado de la Flor, J., and Joseph, M.

(2004). Security in the Wild: User Strategies for Managing

Security as an Everyday, Practical Problem. Personal and
Ubiquitous Computing, 8(6), 391-401.

Dourish, P. and Redmiles, D. (2002). An Approach to Usable

Security Based on Event Monitoring and Visualization.

Proceedings of the New Security Paradigms Workshop 2002
(Virginia Beach, VA). New York: ACM.

Goland, Y., Whitehead, E., Faizi, A., Carter, S. and Jensen, D.,

1999. HTTP Extensions for Distributed Authoring - WEBDAV.

Internet Engineering Task Force, Internet Proposed Standard
Request for Comments 2518, February.

Good, N., and Krekelberg, A. 2003. Usability and Privacy: A

study of Kazaa P2P file-sharing. Proc. ACM Conf. Human

Factors in Computing Systems CHI 2003 (Ft Lauderdale, FL).
New York: ACM.

Henning, R. 1999. Security Service Level Agreements:

Quantifiable Security for the Enterprise? New Security Paradigm
Workshop (Ontario, Canada), 54-60. IEEE.

Irvine, C. and Levin, T. 1999. Towards a Taxonomy and Costing

Method for Security Services. Proc. 15
th

 Annual Computer
Security Applications Conference. IEEE.

Irvine, C. and Levin, T. 2001. Quality of Security Service. Proc.
ACM New Security Paradigms Workshop, 91-99.

Kantor, M., Redmiles, D. 2001. Creating an Infrastructure for

Ubiquitous Awareness, Eight IFIP TC 13 Conference on Human-

Computer Interaction (INTERACT 2001 Tokyo, Japan), 431-

438.

Lunt, T. and Jagannathan. 1988. A Prototype Real-Time

Intrusion-Detection Export System. Proc. IEEE Symposium on
Security and Privacy, 59-66. New York: IEEE.

Orlikowski, W. J., & Gash, D. C. (1994). Technological frames:

Making sense of information technology in organizations. ACM
Transactions on Information Systems (TOIS), 12(2), 174-207.

Palen, L. and P. Dourish (2003). Unpacking "privacy" for a

networked world. Proceedings of the SIGCHI conference on

Human factors in computing systems, Ft. Lauderdale, Florida,
USA, ACM Press.

Segall, B. and Arnold, D. (1997). Elvin has left the building: A

publish/subscribe notification service with quenching
Proceedings AUUG97 (Brisbane, Australia).

Sheehan, K. 2002. Towards a Typology of Internet Users and

Online Privacy Concerns. The Information Society, 18, 21-23.

Silva Filho R. S., De Souza C. R. B., and Redmiles D. F.(2003).

The Design of a Configurable, Extensible and Dynamic

Notification Service. Proc. Second International Workshop on
Distributed Event-Based Systems (DEBS'03),

Spyropoulou, E., Levin, T., and Irvine, C. 2000. Calculating Costs

for Quality of Security Service. Proc. 16
th

 Computer Security
Applications Conference. IEEE.

Tatar, D., Foster, G., and Bobrow, D. (1991). Designing for

Conversation: Lessons from Cognoter. International Journal of
Man-Machine Studies, 34, 185-209.

Thomsen, D. and Denz, M. 1997. Incremental Assurance for

Multilevel Applications. Proc. 13
th

 Annual Computer Security
Applications Conference. IEEE.

Whitten, A. and Tygar, J.D. 1999. Why Johnny Can’t Encrypt: A

Usability Evaluation of PGP 5.0. Proc. Ninth USENIX Security
Symposium.

Zurko, M.E. and Simon, R. 1996. User-Centered Security. Proc.
New Security Paradigms Workshop. ACM.

