
Polaris: Usable Virus Protection for Windows
Ka-Ping Yee

University of California, Berkeley
Berkeley, CA 94720

ping@zesty.ca

Marc D. Stiegler, Alan H. Karp, Tyler Close
Hewlett-Packard Labs
1501 Page Mill Road
Palo Alto, CA 94304

{marc.d.stiegler, alan.karp, tyler.close}
@hp.com

Mark S. Miller
Johns Hopkins University

Baltimore, MD 21218

markm@caplet.com

ABSTRACT
We are developing Polaris, an environment for running
unmodified Microsoft Windows applications that protects users
from viruses and spyware while keeping the user experience as
smooth and unchanged as possible. The design philosophy
underlying Polaris is the principle of least authority, but it is
built on Microsoft Windows, an operating system that provides
little or no support for least authority operation. We describe the
Polaris user experience, the way Polaris works, and the user
interface design challenges we faced in developing Polaris.

1. INTRODUCTION
Users of Microsoft Windows suffer frequent attacks from e-mail
viruses, macro viruses, and spyware [2]. All three can be
characterized as software that causes damage if run with too
much authority.

• E-mail viruses (and other dangerous programs) arrive
in executable attachments to e-mail messages. When a
user opens such an attachment, it launches as a running
program with the user’s authority and abuses that
authority to e-mail itself to other victims, install itself
on the system, or damage the user’s files.

• Macro viruses arrive embedded in Microsoft Office
documents with programmable behaviour (such as
Word or Excel files). When a user opens such a
document, the macro abuses the user’s authority to
propagate itself to other documents.

• Spyware can arrive included with other software that
the user intends to download, or it can arrive in an
involuntary download triggered by arriving at a website
or by clicking on an apparently unrelated link. When
the spyware runs, it abuses the user’s authority to
install itself on the system, monitor the user’s
activities, add toolbars and buttons, and display
advertisements.

The predominant attempts to address these problems can be
classified into three categories: scanners, filters, and prompts.

• Anti-virus scanners and spyware scanners may take up
to an hour to finish scanning the entire contents of a
hard disk, and must be run frequently, imposing severe
costs in system usability. A scanner cannot defend
against a new virus until the anti-virus vendor has
added the virus to its database and the scanner has
downloaded the update. Even if the virus is registered
and the scanner is run daily, an infected computer still
has up to a day to attack other computers.

• Filters for e-mail and other network traffic can only
catch viruses they recognize, so their accuracy is
limited by their databases of known viruses. Their
heuristics for detecting viruses can sometimes be
falsely triggered by harmless traffic, resulting in lost e-
mail or broken application behaviour.

• Prompts are a nuisance, and they often ask users to
make security decisions based on insufficient
information. A good example is the warning that Word
displays when opening a document with macros, shown
in Figure 1. Another common type of prompt asks the
user to verify a digital certificate before downloading
or installing software. Digital certificates are intended
to securely label code from trustworthy sources, but
certification authorities have demonstrated that they are
not a reliable means of establishing trust [1].
Moreover, the user interface for checking certificates is
so poor that certificates are rarely examined.

Figure 1. Microsoft Word asks the user to choose between

accepting an absurdly large risk and not getting work done.

All of these mechanisms impede usability while failing to fully
address the problems1. All of these mechanisms also share the
assumption that it is feasible to determine whether a program is
safe to run merely by inspecting the program. We believe that
challenging this assumption can lead to a better solution.

1 Note that we limit the scope of this discussion to security

problems caused by excess authority, not by programming
errors in the operating system. (Polaris is not an operating
system or an operating system modification, merely a tool that
runs on Microsoft Windows.) E-mail viruses, macro viruses,
and spyware would continue to be serious problems even if
there were no programming errors in Windows, because it is
simply not designed to solve these problems.

2. LEAST AUTHORITY DESIGN
Microsoft Windows, MacOS, Linux, and all Unix-based
operating systems provide security controls designed primarily to
support distinctions between user accounts. In these systems, it
is comparatively easy to grant particular permissions to selected
users, but it is comparatively difficult to grant permissions only
to selected application processes. By default, any program that a
user runs is given the authority to do anything that user can do.

The aforementioned problems can be better addressed simply by
following the principle of least authority2: each program should
only be given the least authority necessary to perform its
intended task. Polaris [4] limits the authorities of application
programs by confining each application in a separate user
account. Windows permission settings are used to give the
confined account very limited access to the disk. The application
is only allowed to write in a temporary area, read system
libraries in the Windows directory, and read libraries and data
files in the application’s own installation directory.

3. SECURITY BY DESIGNATION
An application that performs useful tasks will usually, over the
course of its execution, need access to information outside of the
application itself. For example, most applications need to open
and save files on the disk. The key usability design challenge is
to provide the necessary extensions of authority while
maintaining user control over which authorities are granted.

Our approach to this challenge is to look for the user’s acts of
designation that correspond to acts of authorization [5]. Usually,
normal use includes an act of designation, so we don’t have to
inconvenience the user with any extra work. For example, when
the user double-clicks a file to open it in its associated
application, that double-click can be interpreted as an indication
that the launched application should be granted access to that one
file. When the user issues a “Save” command and selects the
desired location and name of the file to save, the application
should be granted access to write just that one file.

To handle double-clicking on files, Polaris changes the default
file type associations so that files associated with confined
applications are launched via Polaris instead. When the user
opens such a file, Polaris provides a copy of the file to the
confined application. If the confined application makes changes
to the file, Polaris copies back these changes to the original file.

To handle requests to open and save files from within the
application, Polaris replaces the application’s Open and Save
dialog boxes with dialog boxes from Polaris. After the user
selects a file, Polaris copies and synchronizes the file between
the user’s account and the confined application’s account so that
the application effectively has access to only the selected file.

When there is no act of designation indicating a desire to grant
authority, we make some compromises. For example, when the
user views a web page containing images on the local disk, the

2 This is also known as the principle of least privilege [3].

However, the term privilege is commonly used to refer to
representations of permission in system data structures,
whereas what matters is the actual potential to do harm. We
prefer using the term authority in order to emphasize the latter.

user does not select the image files even though the browser
needs to read those files. In this case, we grant the browser read-
only access to the directory containing the page.

4. USAGE
Aside from the initial step of setting up the confined accounts,
the experience of using Polaris is mostly the same as using a
computer without Polaris. Window title bars are adjusted to add
an indication of the confinement domain, as in Figure 2.
Applications and their file dialog boxes operate normally, though
sometimes a brief flash of the application’s dialog box is visible
before it is replaced with the dialog box from Polaris.

Figure 2. Left: a confined window. Right: a normal window.

5. EVALUATION
A pre-alpha version of Polaris has been used in day-to-day work
by about 20 people at HP Labs, some of them for over six
months. For the most part, our users aren’t aware of its presence
and continue to use their computers normally. We have several
known cases of viruses that were rendered harmless by Polaris,
which we found because anti-virus software detected a virus in a
confined account where it could do no damage.

6. CONCLUSIONS
Polaris achieves protection against entire families of attacks
while minimizing its impact on usability and functionality by
applying the principle of least authority at a per-application level.
In particular, Polaris can immediately defend against new viruses
found in the wild, unlike anti-virus scanners, which can only
defend against viruses that have been caught and inspected.

Our ultimate goal is to free users from having to run virus
scanners, run spyware scanners, and answer security prompts,
and to let them just use applications normally without fear of
viruses. For Microsoft Office and other common applications,
Polaris is a big step toward achieving this goal. The current
release does not limit network access and does not provide good
support for linking and embedding of Office documents, and we
are working on solutions to these issues for the beta version.

7. REFERENCES
[1] B. Edelman. How VeriSign Could Stop Drive-By

Downloads. http://benedelman.org/news/020305-1.html
[2] S. Granneman. Linux vs. Windows viruses.

http://www.securityfocus.com/columnists/188
[3] J. H. Saltzer, M. D. Schroeder. The Protection of

Information in Computer Systems. Proceedings of the
IEEE, 63, 9 (Sep. 1975), 1278–1308.

[4] M. Stiegler, A. H. Karp, K.-P. Yee, M. S. Miller. Polaris:
Virus Safe Computing for Windows XP. HP Labs
Technical Report HPL-2004-221.
http://www.hpl.hp.com/techreports/2004/HPL-2004-221.pdf

[5] K.-P. Yee. Aligning Usability and Security. In IEEE
Security & Privacy Magazine, Sep. 2004.

