
A Software Composition Flaw in Google Desktop Search

Oren Dobzinski and Jeannette M. Wing
Electrical and Computer Engineering Department and Computer Science Department

Carnegie Mellon University
5000 Forbes Ave., Pittsburgh PA

{orend, wing}@cs.cmu.edu

ABSTRACT
Modern software systems are composed of different modules
and objects that interact with each other. Each of these
components may satisfy a local security policy. It may also
satisfy a global security policy with respect to its intended
operating environment. However, when many components
are put together, because of unexpected interactions among
them, a local security policy and/or the global security pol-
icy may be violated. A composition flaw is when the ex-
ecution of a composition of separately secure components
leads to a system state in which a local or the global secu-
rity policy is invalidated1. We are particularly interested in
composition flaws at the design, not code level and therefore
are currently exploring the nature of these flaws so we can
detect them automatically before the composition is per-
formed. Our long-term goal is to identify new kinds of com-
position flaws before attackers discover and exploit them.
As a first step towards this goal we show an analysis of a
recent composition flaw discovered in the Google Desktop
Search application, a flaw that compromises users’ privacy.
We show the principles of this type of flaws and describe our
approach to detecting them.

1. INTRODUCTION
Our research direction was inspired by a composition flaw
that was recently discovered in the Google Desktop Search
(gds) application, in the composition of gds and a Java ap-
plet (see [1]). We will briefly describe this flaw and then give
a formal model for it. One of the components we describe,
gds is a tool that allows users to search their local machines.
A unique feature of gds is an integration of a short summary
of local search results inside a regular search results page.
This summary includes 30-40 character snippets of local files
that contain the queried term. This integration is done by
gds by observing all outgoing connections on the localhost.

1Notice that we can have a composition flaw even if each
component is implemented correctly with respect to its be-
havioral specification.

Once a google.com request is detected, gds performs a lo-
cal search. When the results from google.com return, the
local search results are integrated with the returned html
page. The integrated page is returned to the initiating en-
tity. The other component in our system is a Java applet,
whose security policy states that it cannot read any local
files.

While each of these components obeys the global security
policy, their composition creates a flaw that can be exploited
in the following way. A gds user visits a malicious website
that contains a Java applet, which is loaded to the user’s
host memory. The applet connects to the attacker’s host,
which serves as a web proxy and performs a google search.
The outgoing google query is detected by gds, and a local
search is initiated by gds. The attacker’s host returns a
results page, possibly an old one that it cached, and gds
integrates the search results and returns it to the applet.
The search results are transmitted to the attacker’s host,
which can observe the snippets from localhost’s files. In
fact, it can initiate any search it desires with any keyword
and therefore read sensitive parts of files on localhost.

2. FORMAL MODEL
Let JavaApplets be the set of all Java applets. Let Hosts be
the set of all hosts. Let Files be the set of all files on all hosts.
Let Applications be the set of all applications. We define
readableFiles(host, X) ⊆ Files as the set of files residing in
host that may be partially or fully readable by an applet,
application or a host X, where host∈ Hosts. Formally: Let
E be the set Hosts ∪ Applications ∪ JavaApplets. We define
a function readableFiles: Hosts × E → 2Files. We now fix
a host localhost and omit host when we use readableFiles
below.

Let connect be a binary relation, connect : E × E→ Boolean,
where connect(e1, e2) indicates that there is a flow of data
from e1 to e2. Note that connect is not symmetric. It is
given that connect(X, host1) ⇒ readableFiles(X) ⊆ read-
ableFiles(host1), meaning that when an applet or an appli-
cation is connected to a certain host, the set of files that are
readable by it is now readable by the host as well.

The global security policy we would like to maintain is: ∀
remoteHost ∈ Hosts\{localhost}, readableFiles(remoteHost)
= ∅. We will show how this property does not hold in the
case of the Google Desktop Search exploit.



2.1 The Java Applet Component
The first component we consider is a Java Applet, applet ∈
JavaApplets. The security policy of this component is: ∀
applet ∈ JavaApplets, readableFiles(applet) = ∅. In order
to satisfy this policy the following property is always en-
forced: Let applet.originatingHost be the host from which
the applet was downloaded. It is always true that ∀ applet ∈
JavaApplets, ∀ host1 ∈ Hosts, connect(applet, host1) = true
⇒ applet.originatingHost = host1. This property specifies
that the applet is allowed to make network connections only
to the originating host of the applet. Also, for some applet
∈ JavaApplets we denote applet.host as the host on which
the applet is running, where host ∈ Hosts.

2.2 The Google Desktop Search Component
The second component we consider is the Google Desktop
Search application, denoted as gds ∈ Applications. We de-
note gds.host as the host on which gds is running, where host
∈ Hosts. One property of gds that is always enforced is the
following: ∀ host1 ∈ Hosts, connect(host1, gds) = true ⇒
gds.host = localhost, which means that the local web server
run by gds only accepts connections to localhost (127.0.0.1).
We assume that the gds application has access to some files
on the host it runs on (defined by the user). Formally, we
assume that readableFiles(gds) 6= ∅. Note that this compo-
nent does not have a security policy. Next we describe the
attack.

3. THE ATTACK
1. The user who uses the gds application (gds.host = lo-

calhost) visits the attacker webpage, which is located
on the attacker’s host, attackerHost ∈ Hosts. A Java
applet, applet ∈ JavaApplets is loaded to the user’s
host memory. Thus applet.originatingHost = attack-
erHost.

2. The applet connects to the attacker’s host, which serves
as web proxy and performs a google search.

3. The outgoing google query is detected by gds, a local
search is initiated by gds, after the following connec-
tion is established: connect(localhost, gds). Note that
connect(localhost, gds) = true since gds.host = local-
host.

4. The attacker’s host returns some results page, possibly
an old one that it cached, and gds integrates the search
results and returns it to the applet: connect(gds, ap-
plet).

5. The following connection is established: connect(applet,
attackerHost) = true. Such connection is allowed since
applet.originatingHost = attackerHost. The search re-
sults are transmitted to the attacker’s host, which can
observe the snippets from localhost’s files.

Therefore we have:

1. connect(applet, attackerHost) ⇒ readableFiles(applet)
⊆ readableFiles(attackerHost)

2. connect(gds, applet) ⇒ readableFiles(gds) ⊆ readable-
Files(applet)

3. connect(localhost, gds)⇒ readableFiles(localhost) ⊆ read-
ableFiles(gds)

All three connects are possible and hold true, so readable-
Files(localhost) ⊆ readableFiles(attackerHost). Therefore we
can conclude that readableFiles(localhost) 6= ∅ ⇒ readable-
Files(attackerHost) 6= ∅, since we assumed that readable-
Files(localhost) 6= ∅.

4. THE FIX
Rather than inserting the local search results directly into
the Google search result, gds could insert some HTML that
creates an internal frame (IFRAME) element which loads its
content from the gdss internal web server. This IFRAME
would have a different source than the web page that sur-
rounds it, meaning that hostile applets, would be unable
to read the local search results. This was indeed the fix
that Google chose to implement. Formally, the fix to this
flaw is the following. We refine the connection conditions of
gds by adding another property to gds: ∀ e ∈ Applications,
connect(gds, e) = true ⇔ e ∈ IFrames, where IFrames ⊆
Applications. The new component we have is an IFrame,
which has a property similar to the Java applet property
: ∀ iframe ∈ IFrames, ∀ e ∈ E, connect(iframe, e) = true
⇔ iframe.originatingHost = e. Hence, the step connect(gds,
applet) in the attack is not allowed. We have an intermediate
step connect(iframe, applet), which does not happen since
applet.originatingHost 6= iframe.originatingHost. Thus, the
chain above breaks. Formally, the attack

1. connect(applet, attackerHost) 2. connect(iFrame,applet)
3. connect(gds, iFrame) 4. connect(localhost, gds), where
iFrame ∈ IFrames is not possible since connect(iFrame, ap-
plet) = false.

5. MODEL CHECKING APPROACH
We are currently investigating a model checking approach
to automate the detection of composition flaws. For the
gds example we expressed the security policy in a propo-
sitional temporal logic, and modeled the components as a
state-transition system. We then used a model checker to
check first whether each component satisfies its local secu-
rity policy and second, whether the composition of the com-
ponents satisfies the given global security policy. A model
checker either decides that the components individually and
compositionally obey the respective security policies or give
a counterexample execution that would show which sequence
of actions could be taken to invalidate one of the policies. In
the gds example the output of the model checker (SMV) was
precisely the series of steps described in the attack section.
Our hope is to allow automatic verification of the composi-
tion of software modules in order to detect flaws before the
composed system is deployed. Moreover, by using model
checking as a state exploration tool, we may be able to dis-
cover new attacks.

6. REFERENCES
[1] S. Nielson, S. J. Fogarty and D. S. Wallach. “Attacks on

Local Searching Tools”. Technical Report TR04-445, De-
partment of Computer Science, Rice University, December
2004.


