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Figure 6: Left: Results of experiments B8a through B8e. Increasing the amount of specialized training data has limited effect
on the basic8 condition. Right: Results of experiments C8a through C8e. Increasing the amount of specialized training data has a
small but significant effect on the comprehensive8 condition.

each condition.
Overall, we found that weighting had only a minor effect. There were few significant differences at one million,

one billion, or one trillion guesses, with equal weighting occasionally outperforming the other two in some conditions.
From these results, we concluded that the choice of weighting was not particularly important, but we use an equal
weighting in all other experiments that train with passwords from our dataset because it provides an occasional benefit.
BFM training. We also investigated the effect of training data on the performance of the BFM calculator, using
four training sets: one with public data only, one that combined public data with collected passwords across our
conditions, and one each specialized for basic8 and comprehensive8. Because the BFM algorithm eventually guesses
every password, we were concerned only with efficiency, not total cracking. We found that adding our data had
essentially no effect at either smaller or larger numbers of guesses. Specialized training for basic8 was similarly
unhelpful. Specialized training for comprehensive8 does increase efficiency somewhat, reaching 50% cracked with
about 30% fewer guesses.

5.3 Effects of test-data selection
Researchers typically don’t have access to passwords created under the password-composition policy they want to
study. To compensate, they start with a larger set of passwords (e.g., the RockYou set), and pare it down by discarding
passwords that don’t meet the desired composition policy (e.g., [16, 46]). A critical question, then, is whether subsets
like these are representative of passwords actually created under a specific policy. We find that such subsets are not
representative, and may in fact contain passwords that are more difficult to guess than passwords created under the
policy in question.

In our experiments, we compared the guessability of 1000 comprehensive8 passwords to the guessability of the
206 passwords that meet the comprehensive8 requirements but were collected across our other seven conditions (the

comprehensive8basic16
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Figure 7: Varying the weighting of our passwords within the public training data among one-tenth (X1/10), equal weighting (X1),
and ten times (X10) has little to no effect on the efficiency of cracking passwords. Results shown for four example conditions.
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left, the Weir calculator was trained with only public data; in experiment S2, shown at right, the Weir calculator was trained on a
combination of our data and public data.

comprehensiveSubset set). We performed this comparison with two different training sets: public data, with an em-
phasis on RockYou passwords that meet comprehensive8 requirements (experiment S1); and the same data enhanced
with our other 2000 collected comprehensive8 passwords (experiment S2).

Both experiments show significant differences between the guessability of comprehensive8 and comprehensiveSub-
set test sets, as shown in Figure 8. In the two experiments, 40.9% of comprehensive8 passwords were cracked on
average, compared to only 25.8% comprehensiveSubset passwords. The two test sets diverge as early as one billion
guesses (6.8% to 0.5%).

Ignoring comprehensiveSubset passwords that were created under the basic16 condition allows us to analyze 171
passwords, all created under less strict conditions. Only 25.2% of these passwords are cracked on average, suggesting
that subsets drawn exclusively from less strict conditions are more difficult to guess than passwords created under
stricter requirements.

To understand this result more deeply, we examined the distribution of structures in the two test sets. There are
618 structures in the 1000-password comprehensive8 set, compared to 913 for comprehensiveSubset (normalized).
Fifty-two percent of comprehensive8 passwords have unique structures, compared to 85% for comprehensiveSubset.
This distribution of structures explains why comprehensive8 is significantly easier to guess.

We do not know why the two samples are different, although we suspect it may be related to the comprehen-
siveSubset subset isolating those users who make the most complex passwords. Regardless of the reason for this
difference, however, researchers seeking to compare password policies should be aware that such subsets may not be
representative.

5.4 Guessability and entropy
Historically, Shannon entropy (computed or estimated using various methods) has provided a convenient single statis-
tic to summarize password strength. It remains unclear, however, how well entropy reflects the guess resistance of
a password set. While information entropy does provide a theoretical lower bound on the guessability of a set of
passwords [28], in practice a system administrator may be more concerned about how many passwords can be cracked
in a given number of guesses than about the average guessability across the population. Although there is no math-
ematical relationship between entropy and this definition of guess resistance, we examine the possibility that the two
are correlated in practice. To do this, we consider two independent measures of entropy, as defined in Section 4.2:
an empirically calculated estimate and a theoretical NIST estimate. For both measures, we find that entropy esti-
mates roughly indicate which composition policies provide more guess resistance than others, but provide no useful
information about the magnitude of these differences.
Empirically estimated entropy. We ranked our password conditions based on the proportion of passwords cracked
in our most complete experiment (E) at one trillion guesses, and compared this to the rank of conditions based on
empirically estimated entropy. We found these rankings, shown in Figure 9, to be significantly correlated (Kendall’s
τ = 0.71, Holm-corrected p = 0.042). However, looking at the proportion of passwords cracked at a million or a
billion guesses, the correlation in rankings is no longer significant (Holm-corrected p = 0.275, 0.062). The same
pattern of significance, correlation at one trillion guesses but not at one billion or one million, was found in our largest
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public-data experiment (P4). These results indicate that entropy might be useful when considering an adversary who
can make a large number of guesses, but is not useful when considering a smaller number of guesses.

Further, empirically estimated entropy was unable to predict correctly the ranking of dictionary8, even when
considering a large number of guesses. This condition displayed greater resistance to guessability than basic8, yet
its empirically estimated entropy was lower. This might indicate a flaw in how entropy was estimated, a flaw in the
guessing algorithm, or an innate shortcoming of the use of entropy to predict guessability. Since entropy can only
lower-bound the guessability of passwords, it is possible for the frequency distribution of dictionary8 to have low
entropy but high guess resistance. If this is the case, Verheul theorized that such a distribution would be optimal for
password policy [43].
NIST entropy. Computing the NIST entropy of our password conditions produces three equivalence classes, as
shown in Figure 9. These arise because NIST entropy is not granular enough to capture all differences between our
conditions. First, NIST entropy does not take into account the size of a dictionary or its implementation. All five
of our dictionary and blacklist conditions meet the NIST requirement of a dictionary with at least 50,000 words [8].
Implementation details, such as case-insensitive blacklist checking or the removal of non-alphabetic characters before
a dictionary check, are not considered in the entropy score. Our results show that these details lead to password
policies with very different levels of password strength and should be considered in a future heuristic.

Second, the NIST entropy scores for basic16 and comprehensive8 are the same, even though basic16 appears to be
much more resistant to powerful guessing attacks. This may suggest that future heuristics should assign greater value
to length than does the NIST heuristic.

Perhaps surprisingly, the equivalence classes given by NIST entropy are ordered correctly based on our results
for guessability after 50 trillion guesses. Though its lack of granularity fails to capture differences between similar
password conditions, NIST entropy seems to succeed at its stated purpose of providing a “rough rule of thumb” [8].

We stress that although both measures of entropy provide a rough ordering among policies, they do not always
correctly classify guessability (see for example dictionary8), and they do not effectively measure how much additional
guess resistance one policy provides as compared to another. These results suggest that a “rough rule of thumb” may
be the limit of entropy’s usefulness as a metric.

6 Discussion
We next discuss a number of important issues regarding ethics, ecological validity, and the limitations of our method-
ology.
Ethical considerations. Most of our results rely on passwords we have collected during a user study (approved by
our institution’s IRB). However, we also use the RockYou and MySpace password lists. Although these passwords
have collectively been used by a number of scientific works that study passwords (e.g., [4,13,46,47]), this nevertheless
creates an ethical conundrum: Should our research use passwords acquired illicitly? Since this data has already been
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made public and is easily available, using it in our research does not increase the harm to the victims. We use
these passwords only to train and test guessing algorithms, and not in relationship with any usernames or other login
information. Furthermore, as attackers are likely to use these password sets as training sets or cracking dictionaries,
our use of them to evaluate password strength implies our results are more likely to be of practical relevance to security
administrators.
Ecological validity. As with any user study, the ecological validity of our approach is important to the generalizability
of our results. First, it is important to understand the results in the context of our participant sample. As we describe
in Sections 1 and 3.4, our sample of Mechanical Turk participants is somewhat younger and more educated than the
general population, but more diverse than typical small-sample password studies.

A second factor inviting consideration is that the passwords we collected did not protect high-value accounts. As
we describe in Section 1, this is a longstanding limitation of password research. To gain insight into the extent to
which our participants behaved as they would in non-study conditions, we tested two password-creation scenarios
(Section 3.3): one was taking a survey, designed to observe user behavior with passwords for short-term, low-value
accounts; and one was a simulated change to a longer-term, higher-value email account. Our users provided stronger
passwords (measured by guessability and entropy) in the email scenario, a result consistent with users picking better
passwords to protect a (hypothetical) high-value e-mail account than a low-value survey account. All our conditions
except basic8 used the email scenario.

In our study, as in the real world, some users wrote down or otherwise stored their passwords. We asked participants
who returned for the second half of the study whether or not they stored the password they had created (after reassuring
them they would get paid either way), and we also instrumented the password-entry form to detect copy-paste and
browser auto-fill behavior. We detected about 6% of participants using these methods of storage, while overall about
one third admitted storing their passwords. Participants in comprehensive8 stored their passwords significantly more
often than those in the other conditions (PHFET, p < 0.05).

We designed our study to minimize the impact of sampling and account-value limitations. All our findings result
from comparisons between conditions. caused by the ways in which conditions differ (e.g., using a different technique
to choose longer passwords than shorter ones) would be correctly captured and appropriately reflected in the results.
Thus, we believe it is likely that our findings hold in general, at least for some classes of passwords and some classes
of users.
Other limitations. We tested all sets of passwords with a number of password-guessing tools; the one we focus on
(the Weir algorithm) always performed best. There may exist algorithms or training sets that would be more effective
at guessing passwords than anything we tested. While this might affect some of our conclusions, we believe that most
of them are robust, partly because many of our results are supported by multiple experiments and metrics.

In this work, we focused on automated offline password-guessing attacks. There are many other real-life threats
to password security, such as phishing and shoulder surfing. Our analysis of password strength does not account for
these. The password-composition policies we tested may induce different behaviors, e.g., writing down or forgetting
passwords or using password managers, that affect password security. Although such effects have previously been
studied for a subset of the policies in this study [25], space constraints dictate that a comprehensive investigation is
beyond the scope of this paper.

7 Conclusion
Although the number and complexity of password-composition requirements imposed by systems administrators at
a wide range of organizations have been steadily increasing, the actual value added by these requirements is poorly
understood. In this work, we take a substantial step forward in understanding not only these requirements themselves,
but also the process of evaluating them.

We introduced a new, efficient technique for evaluating password strength that can be implemented for a variety
of password-guessing algorithms and tuned using a variety of training sets to gain insight into the comparative guess
resistance of different sets of passwords. Using this technique, we were able to perform a more comprehensive
password analysis than had previously been possible.

We found several notable results about the comparative strength of different composition policies. Although NIST
considers basic16 and comprehensive8 equivalent, we found that basic16 is superior for large numbers of guesses.
Combined with a prior result that basic16 is also easier for users, this suggests that basic16 is the better policy
choice [25]. We also found that the effectiveness of a dictionary check depends heavily on the choice of dictionary;
in particular, a large blacklist created using state-of-the-art password-guessing techniques is much more effective than
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a standard dictionary at preventing users from choosing easily guessed passwords. Our findings highlight several in-
teresting points in the password-policy space and suggest some directions for further research to more fully detail a
complete set of tradeoffs among composition-policy requirements.

Our results also reveal important information about conducting guess-resistance analysis. Effective attacks on
passwords created under complex or rare-in-practice composition policies require access to abundant, closely matched
training data. In addition, this type of password set cannot be characterized correctly simply by selecting a subset of
conforming passwords from a larger corpus; such a subset is unlikely to be representative of passwords created under
the policy in question. Finally, we report that Shannon entropy, though a convenient single-statistic metric of pass-
word strength, provides only a rough correlation with guess resistance and is unable to correctly predict quantitative
differences in guessability among password sets.

8 Acknowledgments
We thank Mitch Franzos of the Carnegie Mellon University Parallel Data Laboratory. This research was supported by
NSF grants DGE-0903659, CCF-0424422, and CNS-111676, by CyLab at Carnegie Mellon under grants DAAD19-
02-1-0389 and W911NF-09-1-0273 from the Army Research Office, and by a gift from Microsoft Research.

References
[1] ADAMS, A., SASSE, M. A., AND LUNT, P. Making passwords secure and usable. In HCI 97 (1997).

[2] BISHOP, M., AND KLEIN, D. V. Improving system security via proactive password checking. Computers &
Security 14, 3 (1995), 233–249.

[3] BONNEAU, J. The Gawker hack: how a million passwords were lost, Dec. 2010. http:
//www.lightbluetouchpaper.org/2010/12/15/the-gawker-hack-how-a-million-
passwords- were-lost/.

[4] BONNEAU, J., JUST, M., AND MATTHEWS, G. What’s in a name? evaluating statistical attacks on personal
knowledge questions. In Proc. Financial Crypto. 2010 (Tenerife, Spain, Jan. 2010), pp. 98–113.

[5] BRIGHT, P. Anonymous speaks: The inside story of the HBGary hack. http://arstechnica.com/
tech-policy/news/2011/02/anonymous-speaks-the-inside-story-of-the-hbgary-
hack.ars, February 2011.

[6] BRIGHT, P. “Military Meltdown Monday”: 90K military usernames, hashes released. http:
//arstechnica.com/tech-policy/news/2011/07/military-meltdown-monday-90k-
military-usernames-hashes-released.ars, July 2011.

[7] BUHRMESTER, M., KWANG, T., AND GOSLING, S. D. Amazon’s Mechanical Turk: A new source of inexpen-
sive, yet high-quality, data? Perspectives on Psychological Science 6, 1 (2011), 3–5.

[8] BURR, W. E., DODSON, D. F., AND POLK, W. T. Electronic authentication guideline. Tech. rep., NIST, 2006.

[9] CHIASSON, S., FORGET, A., STOBERT, E., VAN OORSCHOT, P. C., AND BIDDLE, R. Multiple password
interference in text passwords and click-based graphical passwords. In Proceedings of the 16th ACM conference
on Computer and communications security (New York, NY, USA, 2009), CCS ’09, ACM, pp. 500–511.

[10] CONSTANTIN, L. Sony Stresses that PSN Passwords Were Hashed. http://news.softpedia.com/
news/Sony-Stresses-PSN-Passwords-Were-Hashed-198218.shtml, May 2011.

[11] DAVIS, D., MONROSE, F., AND REITER, M. K. On user choice in graphical password schemes. In Proceedings
of the 13th conference on USENIX Security Symposium - Volume 13 (Berkeley, CA, USA, 2004), SSYM’04,
USENIX Association, pp. 11–11.

[12] DEAN, J., AND GHEMAWAT, S. MapReduce: Simplified Data Processing on Large Clusters. In Symp. on
Operating System Design and Implementation (OSDI) (San Francisco, CA, Dec 2004).

16



[13] DELL’AMICO, M., MICHIARDI, P., AND ROUDIER, Y. Password strength: An empirical analysis. In Proc.
INFOCOM 2010 (San Diego, CA, Mar. 2010), pp. 983–991.

[14] DESIGNER, S. John the Ripper. http://www.openwall.com/john/, 1996-2010.

[15] DOWNS, J. S., HOLBROOK, M. B., SHENG, S., AND CRANOR, L. F. Are your participants gaming the system?:
screening mechanical turk workers. In Proceedings of the 28th international conference on Human factors in
computing systems (New York, NY, USA, 2010), CHI ’10, ACM, pp. 2399–2402.
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A Calculator Experiments
Here we detail the complete training and test data used in each of our Weir-algorithm experiments. The first column
gives the experiment number. The next three columns list the three types of training data used to create a Weir-
calculator experiment. The structures column describes the wordlist(s) used to generate the set of character-type
structures that define the Weir algorithm’s search space. The digits and symbols column lists the wordlist(s) that
determine the probabilities with which combinations of digits and symbols can be filled into those structures. The
strings column shows which wordlists provide the probabilities with which alphabetic strings are filled into structures.
In most cases, we train strings on as much data as possible, while restricting structure and digit/symbol training to
those wordlists that contain a quality sample of multi-character-class passwords. In the final column, we describe the
set(s) of passwords that we attempted to guess in a given experiment.

We also list the complete training and test data used in each of our BFM experiments. The experiment number
and test set columns are the same as in the Weir subtable. Training for the BFM calculator, however, is considerably
simpler, using only one combined wordlist per experiment; these lists are detailed in the training set column.

Abbreviations for all the training and test sets we use are defined in the key below the tables.

Weir experiment descriptions
Name Training sets Testing Set

Structures Digits and symbols Strings

Trained from public password data
P1 MS8 MS MS 1000-All
P2 MS8 MS MS, W2, I 1000-All
P3 MS8 MS, RY MS, W2, I, RY 1000-All
P3-C8 MSC MS, RY MS, W2, I, RY 1000-C8
P3-B16 MS16 MS, RY MS, W2, I, RY 1000-B16
P4 MS8, OW8 MS, RY, OW MS, W2, I, RY, OW 1000-All
P4-B16 MS16, OW16 MS, RY, OW MS, W2, I, RY, OW 1000-B16

Trained on half of our dataset, weighted to 1/10th, equal-size, or 10x the cumulative size of the public data
X1/10 MS8, 500-All MS, RY, 500-All MS, W2, I, RY, 500-All 500-All
X1 MS8, 500-All MS, RY, 500-All MS, W2, I, RY, 500-All 500-All
X10 MS8, 500-All MS, RY, 500-All MS, W2, I, RY, 500-All 500-All

Everything
E MS8, OW8, 500-All MS, RY, OW, 500-All MS, W2, I, RY, OW, 500-All 500-All

Testing password subsets that meet comprehensive8 requirements
S0a MSC, OWC MS, OW MS, W2, I, OW 1000-C8, 206-C8S
S0b MSC, OWC, 2000-C8 MS, OW, 2000-C8 MS, W2, I, OW, 2000-C8 1000-C8, 206-C8S
S1 MSC, OWC, RYCD MS, OW, RY MS, W2, I, OW, RY 1000-C8, 206-C8S
S2 MSC, OWC, 2000-C8, MS, OW, 2000-C8, RY MS, W2, I, OW, 2000C8, RY 1000-C8, 206-C8S

RYCD

Split ratio testing on basic8
B8a MS8, OW8, 500-B8 MS, RY, OW, 500-B8 MS, W2, I, RY, OW, 500-B8 2500-B8
B8b MS8, OW8, 1000-B8 MS, RY, OW, 1000-B8 MS, W2, I, RY, OW, 1000-B8 2000-B8
B8c MS8, OW8, 1500-B8 MS, RY, OW, 1500-B8 MS, W2, I, RY, OW, 1500-B8 1500-B8
B8d MS8, OW8, 2000-B8 MS, RY, OW, 2000-B8 MS, W2, I, RY, OW, 2000-B8 1000-B8
B8e MS8, OW8, 2500-B8 MS, RY, OW, 2500-B8 MS, W2, I, RY, OW, 2500-B8 500-B8

Split ratio testing on comprehensive8
C8test1/10 MSC, 500-C8 MS, RY, 500-C8 MS, W2, I, RY, 500-C8 2500-C8
C8test1 MSC, 500-C8 MS, RY, 500-C8 MS, W2, I, RY, 500-C8 2500-C8

C8a MSC, OWC, 500-C8 MS, RY, OW, 500-C8 MS, W2, I, RY, OW, 500-C8 2500-C8
C8b MSC, OWC, 1000-C8 MS, RY, OW, 1000-C8 MS, W2, I, RY, OW, 1000-C8 2000-C8
C8c MSC, OWC, 1500-C8 MS, RY, OW, 1500-C8 MS, W2, I, RY, OW, 1500-C8 1500-C8
C8d MSC, OWC, 2000-C8 MS, RY, OW, 2000-C8 MS, W2, I, RY, OW, 2000-C8 1000-C8
C8e MSC, OWC, 2500-C8 MS, RY, OW, 2500-C8 MS, W2, I, RY, OW, 2500-C8 500-C8
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BFM experiment descriptions
Name Training set Test set

B1 RY, MS, I 1000-All
B2 RY, MS, I, 500-All 500-All
B3 RY, MS, I, 2000-B8 1000-B8
B4 RY, MS, I, 2000-C8 1000-C8

Key to password sets
RY RockYou list I inflection list

RYCD RY, filtered w/ all reqs. of C8 W2 simple Unix dictionary
MS MySpace list OW paid Openwall dictionary

MS8 MS, filtered w/ min length of 8 OW8 OW, filtered w/ min length of 8
MS16 MS, filtered w/ min length of 16 OW16 OW, filtered w/ min length of 16
MSC MS, filtered w/ min length of 8 OWC OW, filtered w/ min length 8

and character class reqs. of C8 and character class reqs. of C8

n-All n passwords from each of our conditions n-B8 n basic8 passwords
n-B16 n basic16 passwords n-C8 n comprehensive8 passwords
n-C8S n comprehensiveSubset passwords n-RYCD n RYCD passwords

20


