Connectivity

Week 9 - March 20, 22

Computers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

The 4C Framework

Information and Communications Technology (ICT) can be thought of as the 4Cs

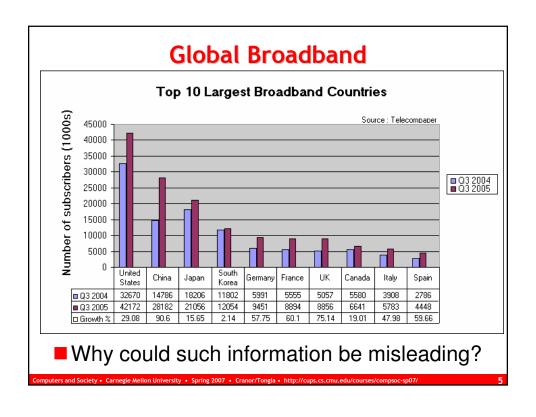
Internet

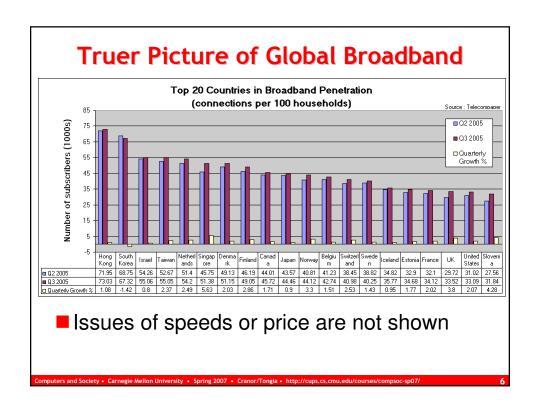
- Computers
 - Devices
- Connectivity
 - Analog/digital, packet/circuit
- paths (e.g. phone

- Content
 - Centralized/decentralized
- (human) Capacity
 - Literacy, language, etc.

Some Questions about Connectivity

- Is it fast enough?
- Is it cheap enough?


available enough?


- If not, is that a big deal?
- Are there distribution issues? <
- ■What is the role of government and policy?

Computers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

US Broadband Penetration Web Connection Speed Trends - Home (US) (Source: Nielsen//NetRatings) 100% 90% Broadband 7% 56.82% 57.21% 58.57% 59.92% 61.32% 62.46% 63.76% 64.89% 65.57% Composition % 50% 40% 2044 63% 43.18% 42.79% 41.43% 40.08% 38.68% 37.54% 36.24% 35.11% 34.43% 10% Narrowband Dec-05 Month Why is this misleading?

In a Digital World, Everything's a Bit

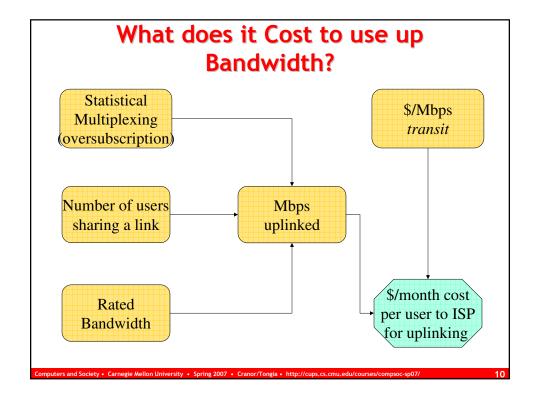
- (retail) Bandwidth Providers often chase the sotermed "Triple Play"
 - Voice __ low bandwidth; POTS = 64 kbps __ Lots of \$, still
 - Video
 - Very high subscription rates in the US, approaching 90%
 - Different designs are possible
 - Shared (e.g., broadcast)
 - Switched (e.g., Joost, YouTube, Pay-per-View)
 - Data
- Mobility is another HUGE market
- What about secure (low-bandwidth connections)?
 - Home alarms
 - Smart Homes ("Home of the Future")

Computers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

-

Different Bits are Different

p\$ = picodollars = 10^{-12}


Voice

2002 or 2003 US Statistical Abstract Average Numbers except in Italics

- Fixed
 - 23 \$/month, 1 month/1923 min. → ~ 3,100 p\$/bit
- LD
 - \$0.10/minute → 26,000 p\$/bit
 - Incl. International charges (FCC numbers)
- Web (broadband user)
 - 35 \$/month, 2 hours per day usage, 30 kbps average usage → ~ 5,400 p\$/bit
- TV (cable/satellite, excl. PPV)
 - 225 \$/year/person, 2.58 persons/household, 850 hours/year watched \rightarrow ~ 36 p\$/bit
 - A good fraction of their revenues comes from advertising
 - BUT, we don't know what demand will look from 5 years from now, or, say, under 100 Mbps conditions

Computers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

Components of Retail Connectivity O&M Hardware / Marketing / **Uplinking** Installation Advertising (transit fees) CRM Technical • One-time Also Varies by · Vary by • One time costs location capital costs are depends on technology • Depends on amortized over competition competition time Oversubscription ratios are an ISP · Cost depends on: choice · Speeds offered - Interest rates - Churn determine what - Re-usability of applications can components be run

Primer on Communications...

Computers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

4.

History of Telecommunications

- Ancient History
 - Marathon
 - Ran 40 km in 490 BC to deliver a message of victory (and then died)
 - Smoke, fire, optical, and acoustic signals
 - Water signals also allow the message to be stored (linked to fire/smoke signals)

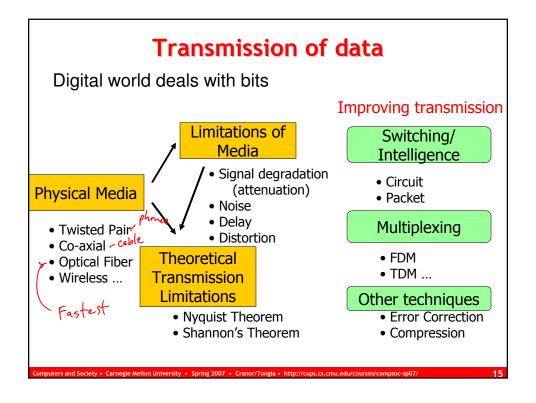
Use of electricity gave rise to "instantaneousness"

Computers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

History of Telecommunications

1800s:

- Telegraph
 - Patented by Samuel Morse
 - Idea came to him in 1832 on during a visit to Italy
 - Patented in 1838
 - First line opened in 1844 between Washington High Court and Baltimore
 - "What Hath God Wrought?"
 - Improvements
 - Two way communications, single battery, etc.
 - TransAtlantic line continuously operating from 1866
- Pony Express came about in 1860
- Transcontinental railroad completed in 1869


Computers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

13

History of Telecommunications (cont.)

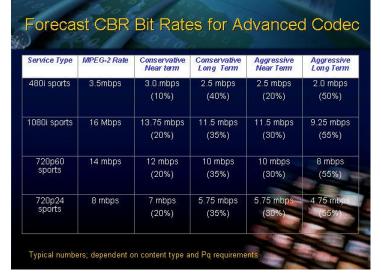
- Telephone
 - Bell patented the telephone on February 14, 1876, beating Elisa Gray by 2 hours!
 - Bell recognized the commercial potential of his device
 - Tried to sell the patent to Western Telegraph for \$100,000, who refused
 - "What shall we do with a toy like that?"
 - Few years later, they offered Bell \$25,000,000 (he refused)
 - Established Bell Telephone Company
 - Delivered and installed 50,000 telephones within the first three years
 - Became the world's largest telephone company: AT&T
 - Almon Strowger, an undertaker, invented the exchange in 1889 because of PRIVACY

Computers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

Encoding and Information

- Sampling How often you "take in" data
 - Nyquist Sampling Theorem: Minimum rate of 2x the highest frequency needed
 - E.g., CDs sample at 44.1 kHz
- Claude Shannon's seminal work in 1948 led to Information theory
 - Statistical properties of message, averaged out over the whole message--without regard to content
 - Tells us channel capacity (signal to noise ratio)
 - $-2^x = M$ (x = number of bits, M = of messages)
 - Thus, log(2) M = x (now, x is a measure of "entropy")

Computers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/


Shannon's Information Theorem

- Relates error-free transmission capacity C, given a bandwidth W (hertz) and signal to noise ratio (S/N)
- $C = W \log 2 * (1 + S/N)$
- Only provides theoretical limits to transmission capabilities
 - · Does not tell us how to encode

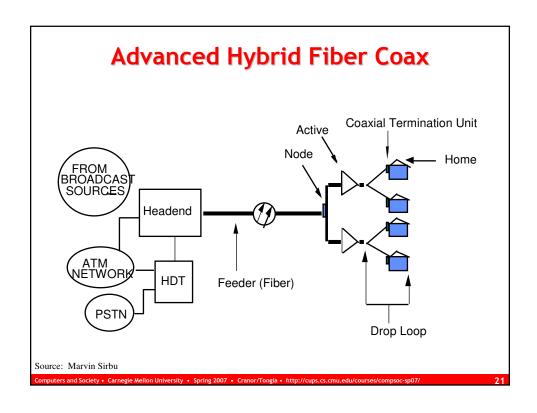
Computers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

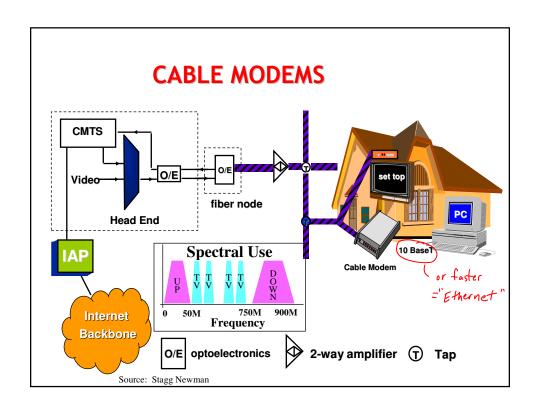
47

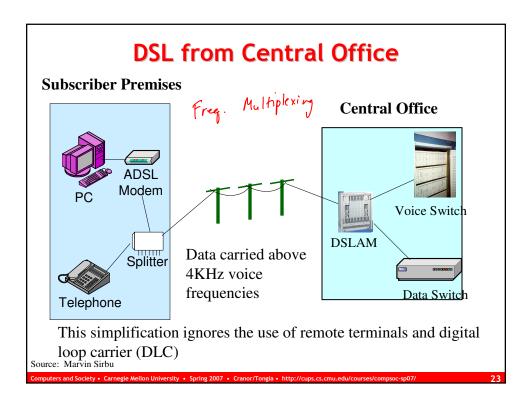
IPTV Bit Rates

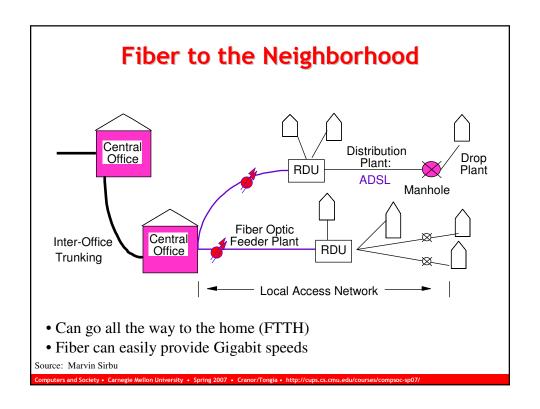
Source: http://www.dslprime.com/pix/cbrrates.jpg

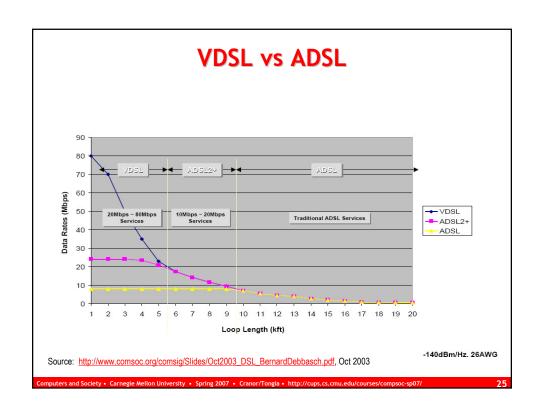
Computers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

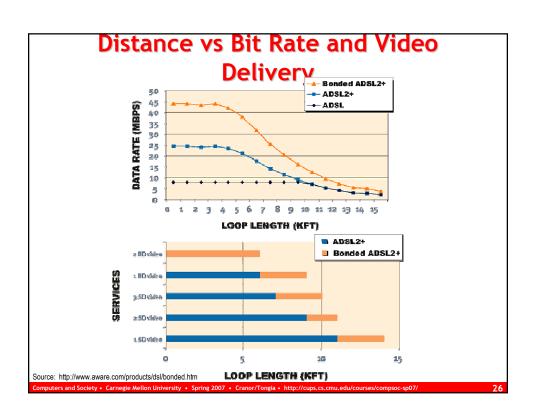

Broadband Access...The "Last Mile"


- Different technologies are available
 - Cable
 - DSL
 - Fiber
 - Wireless
 - Fixed
 - Mobile
 - Satellite
 - Powerline
- They differ in
 - Reach
 - Speeds
 - Costs
 - Regulation (?)


Computers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/


19

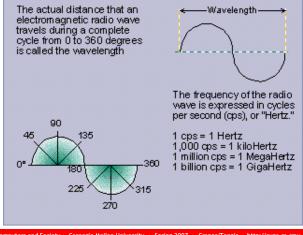

Cable: Hybrid Fiber Coax (HFC) Active Node Headend Headend Feeder (Fiber) Coax Drop Loop Source: Marvin Sirbu Computers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cupx.cs.cmu.edu/courses/compoc-sp07/ 20



Wireless is Gaining Ground

- Landlines have stagnated or diminished in the US
- In much of the world, mobiles are 5-10x landlines
 - E.g., Africa has about 10% mobile phone penetration
 - · Why? less intra structure cost
- There is a generational gap as well....
- Telephony is more established
- Data varies in service
 - Mobile
 - Portable / nomadic
 - Fixed

omputers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/


27

History of Wireless and Radio

- 1894 Marconi sends signal 2 miles
 - Preceded by Bose and Tesla
- 1910 First song transmitted from Metropolitan Opera in New York
- 1917 AM transmission of speech
- 1920 First public radio broadcast in Germany
- 1928 FM transmission of speech (higher quality)

omputers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

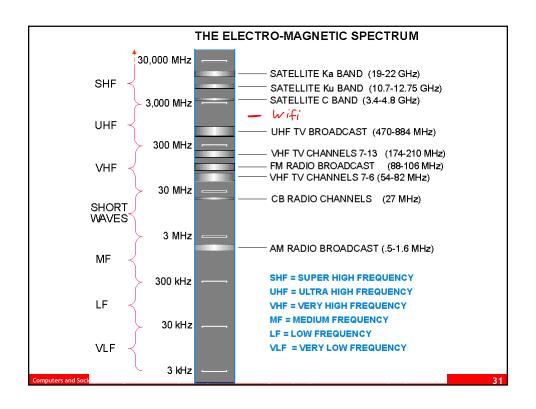
Wireless and other Waves

 $c = \lambda * f$ where

c = speed of wave (light)

 $\lambda = \text{wavelength}$

f = frequency


Computers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

20

Spectrum

Region	Wavelength	Wavelength	Frequency	Energy
3 -	(Angstroms)	(centimeters)	(Hz)	(eV)
Radio	> 10 ⁹	> 10	< 3 x 10 ⁹	< 10 ⁻⁵
			3 x 10 ⁹ - 3 x	
Microwave	10 ⁹ - 10 ⁶	10 - 0.01	10 ¹²	10 ⁻⁵ - 0.01
			3 x 10 ¹² - 4.3	
Infrared	10 ⁶ - 7000	0.01 - 7 x 10 ⁻⁵	x 10 ¹⁴	0.01 - 2
		7 x 10 ⁻⁵ - 4 x 10 ⁻⁵	4.3 x 10 ¹⁴ -	
Visible	7000 - 4000	5	7.5 x 10 ¹⁴	2 - 3
			7.5 x 10 ¹⁴ - 3	
Ultraviolet	4000 - 10	4 x 10 ⁻⁵ - 10 ⁻⁷	x 10 ¹⁷	3 - 10 ³
			3 x 10 ¹⁷ - 3 x	
X-Rays	10 - 0.1	10 ⁻⁷ - 10 ⁻⁹	10 ¹⁹	10 ³ - 10 ⁵
Gamma Rays	< 0.1	< 10 ⁻⁹	> 3 x 10 ¹⁹	> 10 ⁵

Computers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

Special Properties of Spectrum

- Heavily controlled
 - Military uses
 - · Licensed use

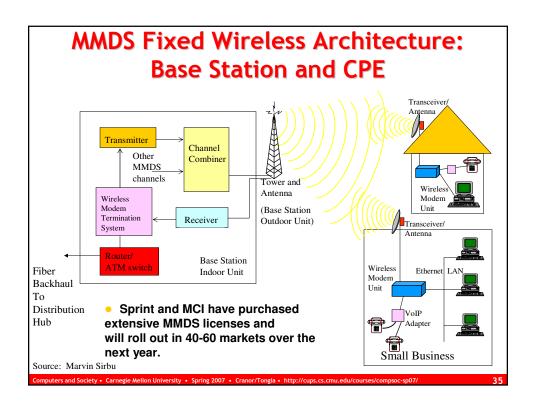
Wifi Spectrum = FREE!

- Source of licensing fees
- Is a public good; everywhere yet not limitless
- Should it be a property (auctioned off?) or a shared resource?
- Many forms are appropriate for point to multipoint (including broadcast)
- Encoding is key for capacity in practice bits per hertz
 - · Theory is bounded by Shannon's Theorem

Computers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

Challenges with Wireless...

- What prevents us from more wireless broadband?
 - Spectrum
 - Reach
 - Related to power levels
 - Line of Sight
 - Costs
 - · Evolving standards and technologies
 - -WiFi
 - Mesh, MIMO, etc.
 - WiMax
 - Fixed and Mobile
 - -3G, 4G, etc.


Computers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

. .

Fixed Wireless Access-Inherently Shared

- Base station
 - · Point to Multipoint
- Receivers
 - Rooftop
 - Indoors
 - Mobile/Portable
- Shared bandwidth depends on technology
 - 25-40 Mbps downstream (might be)
 - 15-25 Mbps upstream
 - Spectrum matters
 - Unlicensed (UNI 5 GHz)
 - Licensed (e.g., MMDS 2.5 GHz)

Computers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

Customer Fixed Wireless Units

Source: Sprint (Hybrid Networks) (antenna/transceiver only)

- Typically, requires clear Line of Sight (LOS)
 - Except in small radius
 - This requires costly site visit to install antenna, run wiring to computer
- Newer alternatives emerging (non-LOS)

omputers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

Base Station Equipment

Source: Sprint (Hybrid Networks-Phoenix)

- A single tower can cover up to 20 mile radius
 - Depends on terrain
- As subscribers increase, may need additional base stations/cells for frequency reuse

Computers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

27

Wireless ISPs

- There are several thousand Wireless ISPs (WISPs) in the U.S.
 - Easy because of light touch regulation
 - Spectrum
 - Antennae
- Majority of WISPs use souped up wireless LAN technology
 - Normal WLAN coverage ~ few hundred feet
 - With directional antennas, coverage can reach several miles

omputers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

Wireless Mesh Networks

- Popular for many city networks
 - · Philadelphia, San Francisco, etc.
- Major advantage
 - Issues of backhaul
- Challenge
 - Shared throughput
- Business model questions
 - Free vs. subsidized vs. at cost
- Q: Can one share connectivity?
 - Open Access Points (mesh or non-mesh)?

Computers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/composc-sp07/

20

Antennas for Long Range WLANs

13.5dBi Yagi 18 in. Long, 3 in. Dia. Distances over 6.5 Miles @ 2 Mbps and 2 Miles @11 MB

21dBi Solid Dish 24 in. Parabolic Dish For Distances up to 25+ Miles @ 2 Mbps 11.5 Miles @ 11 MB

Note: Distances include identical antennas on each site, 50 feet of Low Loss Cable (6.7dB/100 ft) and 10dB fade margin

Source: Cisco

Computers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

Could I use WiFi for a "Last Mile" **Technology?**

- What's the speed?
- ■What's the reach?
- ■What's the cost?
- ■What else do I need?
 - Backhaul = uplinking
 - Management
 - Access Control

How Could we "Secure" WiFi?

- Access control vs. Encryption
 - WEP
 - WPA
 - Access Control MAC Layer
- Choose to run networks as open
 - Why or why not?
 - Default settings are "non-secure" why?
- Calif. is enacting legislation to limit open access points
- People have been arrested/charge for "stealing" WiFi"

Topics for discussion

- Community networks
- Municipal Networks (public)
- Sharing networks
 - Fon, Free
 - Would these be legal in the US?

Violates terms of service

Computers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

4

Techno-Economic Model of Connectivity

■ Based on Tongia (2003)

Hardware	Common equipment; CPE	Is there physical media available? Cost of capital?	
Operating Costs	CRM; Billing; Maintenance	"cheap labor" in developing countries	
One-time Costs	Regulatory fees (e.g., spectrum); Marketing; Promotional equipment (e.g., CPE); Line conditioning / Testing; Installation	Installation can be a bottleneck	
Uplinking Costs	Connecting to global network	Enormous variance across nations; depends on rated speeds / oversubscription	

Computers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

Regulatory and Policy Add-ons

{ Differences beyond lack of competition}

- · Above and beyond techno-economic minimum costs
- ISP licensing fees
- Spectrum
- Rights of Way charges
- Import Duties
- User Taxes and Surcharges
- Uplinking and interconnection restrictions
- Limits on applications and services
- Limits on sharing connectivity

- Lack of clarity / consistency on "affiliate transactions"
- Low density of target users
- Design without scalability or upgrading possibilities
- Proprietary or National-only standards
- High costs of regulatory compliance
- Higher failure rates and/or maintenance
- · High costs of capital

(In no particular order)

Computers and society * Camegie menon ornversity * Spring 2007 * Cranor/Tongia * Intp://cups.cs.cinu.edu/courses/compsoc-spo//

45

Quantification of Add-on Costs

- Generalization is nigh impossible
 - Case to case variation
 - Location
 - Carrier
 - Country
 - Technology
 - Data unavailability
- Larger components often include
 - Licensing
 - Technology and design choice
 - Legacy systems
 - Other infrastructure (power, security, etc.) [is it an add-on?]

omputers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

Egypt's 3rd Mobile License (incl. 3G) \$300 Recently Millions of -5 Subscribers went to \$250 10 Etisalat for 12.5 \$200 **Annual Cost** \$2.9B + 6% \$150 revenue \$100 share \$50 Technology estimated at \$0 6% 8% 10% 14% 20% 12% 16% **Discount Rate** only ~\$1B Source: Tongia (2006)

Where does Policy come in?

US regulator is the Federal Communications Commission (FCC)

Charge from Congress:

"Ensure that the American people have available, at reasonable costs and without discrimination, rapid, efficient, Nation- and world-wide communication services; whether by radio, television, wire, satellite, or cable"

- FCC Website

- History
 - Succeed Federal Radio Commission in 1934
 - Federal Radio Commission (based on Radio Act of 1927) superceded Radio Act of 1912
 - That one was made in response to the *Titanic* all ships must have open and monitored radio channels

omputers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

FCC Jurisdiction

- All non-governmental use of radio
- All international communications originating or terminating in the US
- All interstate telecommunications (whether wired or wireless)
- What about Cable TV?
- Regulations initially separated Information Service from Telecommunications Services
 - Different regulations

Computers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

49

Do we need "Old Style" Regulation?

- Could new technologies make "ownership" of spectrum obsolete?
 - UltraWideBand
 - Really lower power
 - Cognitive Radios
 - Can adapt their transmissions as per ambient conditions
 - Change band, power level, modulation, etc.
- Reality: Most existing spectrum is empty or underused!

Computers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

Issues in Telecommunications

- Standards
 - · Backwards compatibility
- Metrics
 - How to measure size, number of users, etc?
 - Important because of inter-player payments
- Digital Communications
 - · Broadcast industries
 - TV
 - Radio
- Mobile communications
 - · Rush for "3G"
- "Convergence"

Computers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

E 4

Issues in Telecommunications:

- Internet (more later)
- Security
 - Encryption
 - Privacy
- Policy
 - Convergence
 - Open Access
- Market Power
 - Not easy to define at what Layer?
- Globalization
 - "Winner Takes All"

Computers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

Broadband Policy Issues

- Unanswered questions
 - Is there a "natural monopoly" in broadband?
 - Very low marginal costs in telecom
 - How can one support competition over broadband infrastructure?
 - · Who should build broadband networks?
 - Public/Private
 - Market/Regulated
 - How do we define and pay for "Universal Service?
- Thinking of layers or boundaries becomes important
 - Wholesale vs. retail
 - · Physical vs. logical
 - · Content vs. carriage

omputers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/