Lifecycle Issues of Computers

Week 14b - April 27

Computers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

Total Costs of Ownership (10)

- Similar to lifecycle analyses
- What are the segments of costs of owning (and using) a computer?
 - Traditional accounting looks at capital expenditures (capex) and operating expenditures (opex)

- Drilling down for computers
 - Hardware
 - Accessories
 - Software
 - Connectivity
 - Electricity
 - Manpower
 - Training
 - Operators
 - Maintenance
 - Physical
 - Support/Help
 - Security
 - Physical
 - Insurance
 - · Individuals differ from firms
 - Managed resources

Computers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

Educational Institutions TCO Example

- (one particular) Virginia School District (2004)
 - 71,600 client devices (64,000 computers + PDAs etc.)
 - Costs
 - Hardware < Software < Direct Labor < Indirect Labor</p>

Unit	Total Cost		Direct Cost		Indirect Labor Cost		
Overall District Cost	\$233,059,569		\$88,923,705		\$144,135,864		
District Cost per Client Computer	\$3,255		\$1,242		\$2,013		
Unit	Hardware	rdware Soft		Direct Labor		External Application Providers	
District Cost	\$13,441,774	\$15,664,322		\$58,613,663		\$1,203,946	
District Cost per Client	\$188		\$219	\$8	319	\$17	
Computer							
Direct Labor Category		Total Cost		Cost Per Client Computer (\$ US)		Client Computers per Staff	Source: www.classroomtco.org
Operations and Financial		\$44,603,683		\$623		129	1
Professional Development and Training		\$12,204,265		\$170		499	1
Curriculum Development and Support		\$1,805,715		\$25		3,193	
Total Support		\$58,613,663		\$819		99	
ety • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/							

Virginia School District TCO (cont.)

- Questions
 - · How is hardware so cheap?
 - Why were some of the costs higher than other school districts?
 - Subtle issues
 - How are content creation costs allocated?
 - WAS THIS WORTH IT? (not directly addressed)
- Things that may be important
 - Legacy needs
 - Mixing and matching solutions
 - · Average needs vs. peak needs of computing

omputers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

Walking through TCO Calculations...

■ Single PCs

Vs.

- Clusters and corporate (Enterprise) environments
- Other issues
 - Warranty
 - Maintenance
 - Spares

Computers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

5

Lifecycle Analysis...More than Cradle to the Grave

- Q: Is bio-ethanol carbon neutral?
- In general, have to factor in costs and impacts of
 - Production
 - R&D (first of kind)
 - Incremental (small or large volume)
 - Supply chain
 - Shipping
 - Inventory
 - Marketing
 - · Deployment/Installatione" marketing
 - Usage
 - End-of-life

- Reuse

- Disposal → Land fill

Computers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

Environmental Impacts of ICT

- Energy
- Materials
- Both require a Lifecycle analysis to properly measure
 - Direct
 - Indirect

Computers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

Lifecycle Analyses

- Computers case from Matthews, et. al.
 - Depends on assumptions of end-of-life scenarios
- Improvements can come from
 - Reduction in materials
 - Change in materials
 - Tradeoffs abound plastics may be lighter but more pollution
 Coke: Glass bottle vs. can, vs. plastic bottle
 - Design for disassembly/recycling
 - Most soda cans have 3 alloys in them
 - Modularization for re-use

omputers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

How "Green" is a PC?

- UN University reports indicate PCs are very dirty to produce
 - Manufacturing one desktop computer + 17-inch CRT uses
 - 240 kg fossil fuels
 - · 22 kg chemicals
 - 1,500 kg of water
- Some ingredients are scarce, perhaps toxic
 - · Lead, Cadmium, etc.
 - Issue for
 - Manufacturing
 - Disposal

Computers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

-

Environment and Human Rights

- Some materials come from regions in conflict
 - Mineral Coltan (Columbite-tantalite)
 - Used in power storing components of cell phones, computers, some power plants, etc.
 - 80% of reserves are in DRC (formerly, Zaire), undergoing civil war

Source: Natalie Ware, American U

Computers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

e-Commerce

- Endgame (goal): Lower "friction" (i.e., greater efficiency)
 - Thus, more transactions
 - Often from further away!
 - Spurred by legal/trade agreements, e.g., WTO
- Globalization
 - Results in greater supply chain (transport) requirements
 - · Also linked to the Winner-Takes-All phenomenon
 - Subtler issue is when different jurisdictions have different standards
 - Larry Summers signed off on a World Bank memo (internal, for discussion) that stated economics would indicate more migration of dirty industries and wastes to developing countries
 - Lower costs of impacts

Computers and Society • Carnesie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

Electricity - Fundamentals

- Electricity is a special form of energy (kWh)
- Does not exist in usable forms
 - Conversion usually requires prime movers (steam turbines, water turbines, etc.)
 - Access to fuels (primary energy) is a key issue for developing countries
- Electricity is only about 125 years old
 - Widespread use is much more recent
 - US required special programs
 - Rural Electrification Administration (REA) [now Rural Utilities Service]
 - TVA
- Electricity from the grid can not be easily stored (AC)
 - Most electronics use DC

Computers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

43

Energy and Power 101

- Power is Energy per unit Time
- ■1 Watt = 1 Joule/sec
- Light bulb is ??? Watts?
- 1 kWh is a standard measure of power
 - ~10 cents
 - Household consumptions are ~500 kWh/month
- Other units of energy are BTUs and calories

Computers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

How Much Electricity Does ICT Use?

- Numbers as high as 13% of US electricity were claimed (bubble days)
 - End users, servers, networking, etc.
 - Later debunked
- ■ICT Energy (Power) linkages
 - Greater Service Economy, even in developing countries
 - · But, increased globalization

Computers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

4 5

What Consumes Power (ICT Applications)?

- Components of an ICT solution
 - Computing
 - Display

 - CRT
 80 W normal
 10 W suspend

 - LCD
 15-25 W normal
 5-10 W suspend

Storage variable

Uplinking 12 W Wifi 40 W VSAT

- Role of advanced technologies
 - · Chips (processor is largest component)
 - Pentium 4 uses 50+ watts!
 - · LCD screens, OLEDs, etc.
 - Wireless
 - Cognitive Radios reduce power to lowest required level
 - But, emitted power is << power drawn from supply
 - 100 mW is legal limit for WiFi
 - Laptops much less power but less robust (?)

Computers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

Details of Desktop Power

AGP video card - 20-30W PCI video card - 20W

AMD Athlon 900MHz-1.1GHz - 50W AMD Athlon 1.2MHz-1.4GHz - 55-65W

Intel Pentium III 800MHz-1.26GHz - 30W

Intel Pentium 4 1.4GHz-1.7GHz - 65W Intel Pentium 4 1.8GHz-2.0GHz - 75W

Intel Pentium 4 1.8GHz-2.0GHz - 75W Intel Celeron 700MHz-900MHz - 25W

Intel Celeron 1.0GHz-1.1GHz - 35W

ATX Motherboard - 30W-40W

128MB RAM - 10W

256MB RAM - 20W

12X or higher IDE CD-RW Drive - 25W

32X or higher IDE CD-ROM Drive - 20W

10x or higher IDE DVD-ROM Drive - 20W

SCSI CD-RW Drive - 17W

SCSI CD-ROM Drive - 12W

5400RPM IDE Hard Drive - 10W

7200RPM IDE Hard Drive - 13W

7200RPM SCSI Hard Drive - 24W

10000RPM SCSI Hard Drive - 30W

Floppy Drive - 5W

Network Card - 4W

Modem - 5W

Sound Card - 5W

SCSI Controller Card - 20W

Firewire/USB Controller Card - 10W

Case Fan - 3W

CPU Fan - 3W

Source: FLECOM

Computers and Society • Carnegie Mellon University • Spring 2007 • Cranor/Tongia • http://cups.cs.cmu.edu/courses/compsoc-sp07/

How much Energy is Used in 1 Year? (Hypothetical, Estimate)

- Incidental Personal Use
 - 3 hrs/day full power
 - 250 W (with large CRT)
 - 21 hrs/day standby
 - 25 W
 - = [(250*3)+(25*21)]*365
 - \bullet = [750 + 525]*365
 - = 465,375 W-hr
 - = 465.375 kWh

- Cluster/Enterprise
 - 8 hrs/day full power
 - 200 W
 - 16 hrs/day no user
 - 40 W
 - = [(200*8)+(40*16)]*365
 - \bullet = [1600 + 640]*365
 - = 817,600 W-hr
 - = 817.600 kWh

Standby power is a bigger deal than people think...
...Applies to all ICT and appliances and gadgets and A/V!

appropriate and Seciety a Carneria Hellon University a Secien 2007 - Carner Tongia a Intra Vigues or comy adultour real remander and the