Connectivity

Week 9 - March 21, 23

Computers and Society • Carnegie Mellon University • Spring 2006 • Cranor/Tongia/Farber • http://cups.cs.cmu.edu/courses/compsoc-sp06/

The 4C Framework

- Information and Communications Technology (ICT) can be thought of as the 4Cs
 - Computers
 - Devices
 - Connectivity
 - Analog/digital; packet/circuit
 - Content
 - Centralized/decentralized
 - (human) Capacity
 - Literacy, language, etc.

Computers and Society • Carnegie Mellon University • Spring 2006 • Cranor/Tongia/Farber • http://cups.cs.cmu.edu/courses/compsoc-sp06/

Issues of speeds or price are not shown

Computers and Society • Carnegie Mellon University • Spring 2006 • Cranor/Tongia/Farber • http://cups.cs.cmu.edu/courses/compsoc-sp06/

5

History of Telecommunications

- Ancient History
 - Marathon
 - Ran 40 km in 490 BC to deliver a message of victory (and then died)
 - Smoke, fire, optical, and acoustic signals
 - Water signals also allow the message to be stored (linked to fire/smoke signals)

Use of electricity gave rise to "instantaneousness"

Computers and Society • Carnegie Mellon University • Spring 2006 • Cranor/Tongia/Farber • http://cups.cs.cmu.edu/courses/compsoc-sp06/

History of Telecommunications

1800s:

- Telegraph
 - Patented by Samuel Morse
 - Idea came to him in 1832 on during a visit to Italy
 - Patented in 1838
 - First line opened in 1844 between Washington High Court and Baltimore
 - "What Hath God Wrought?"
 - Improvements
 - Two way communications, single battery, etc.
 - TransAtlantic line continuously operating from 1866
- Pony Express came about in 1860
- Transcontinental railroad completed in 1869

Computers and Society • Carnegie Mellon University • Spring 2006 • Cranor/Tongia/Farber • http://cups.cs.cmu.edu/courses/compsoc-sp06/

7

History of Telecommunications (cont.)

- Telephone
 - Bell patented the telephone on February 14, 1876, beating Elisa Gray by 2 hours!
 - Bell recognized the commercial potential of his device
 - Tried to sell the patent to Western Telegraph for \$100,000, who refused
 - "What shall we do with a toy like that?"
 - Few years later, they offered Bell \$25,000,000 (he refused)
 - Established Bell Telephone Company
 - Delivered and installed 50,000 telephones within the first three years
 - Became the world's largest telephone company: AT&T
 - Almon Strowger, an undertaker, invented the exchange in 1889

Computers and Society • Carnegie Mellon University • Spring 2006 • Cranor/Tongia/Farber • http://cups.cs.cmu.edu/courses/compsoc-sp06/

Primer on Communications...

Computers and Society • Carnegie Mellon University • Spring 2006 • Cranor/Tongia/Farber • http://cups.cs.cmu.edu/courses/compsoc-sp06/

Q

Wireless and other Waves

 $c = \lambda * f$ *where*

c = speed of wave (light)

 $\lambda = \text{wavelength}$

f = frequency

Computers and Society • Carnegie Mellon University • Spring 2006 • Cranor/Tongia/Farber • http://cups.cs.cmu.edu/courses/compsoc-sp06/

Wireless and Radio

- ■1894 Marconi sends signal 2 miles
 - Preceded by Bose and Tesla
- 1910 First song transmitted from Metropolitan Opera in New York
- 1917 AM transmission of speech
- 1920 First public radio broadcast in Germany
- 1928 FM transmission of speech (higher quality)

Computers and Society • Carnegie Mellon University • Spring 2006 • Cranor/Tongia/Farber • http://cups.cs.cmu.edu/courses/compsoc-sp06/

11

Spectrum

Region	Wavelength	Wavelength	Frequency	Energy
	(Angstroms)	(centimeters)	(Hz)	(eV)
Radio	> 10 ⁹	> 10	< 3 x 10 ⁹	< 10 ⁻⁵
			3 x 10 ⁹ - 3 x	
Microwave	10 ⁹ - 10 ⁶	10 - 0.01	10 ¹²	10 ⁻⁵ - 0.01
			3 x 10 ¹² - 4.3	
Infrared	10 ⁶ - 7000	0.01 - 7 x 10 ⁻⁵	x 10 ¹⁴	0.01 - 2
		7 x 10 ⁻⁵ - 4 x 10 ⁻⁵	4.3 x 10 ¹⁴ -	
Visible	7000 - 4000	5	7.5 x 10 ¹⁴	2 - 3
			7.5 x 10 ¹⁴ - 3	
Ultraviolet	4000 - 10	4 x 10 ⁻⁵ - 10 ⁻⁷	x 10 ¹⁷	3 - 10 ³
			3 x 10 ¹⁷ - 3 x	
X-Rays	10 - 0.1	10 ⁻⁷ - 10 ⁻⁹	10 ¹⁹	10 ³ - 10 ⁵
Gamma Rays	< 0.1	< 10 ⁻⁹	> 3 x 10 ¹⁹	> 10 ⁵

Computers and Society • Carnegie Mellon University • Spring 2006 • Cranor/Tongia/Farber • http://cups.cs.cmu.edu/courses/compsoc-sp06/

Special Properties of Spectrum

- Heavily controlled
 - Military uses
 - Licensed use
- Source of licensing fees
- Is a public good; everywhere yet not limitless
- Many forms are appropriate for point to multipoint (including broadcast)
- Encoding is key bits per hertz

Computers and Society • Carnegie Mellon University • Spring 2006 • Cranor/Tongia/Farber • http://cups.cs.cmu.edu/courses/compsoc-sp06/

Encoding and Information

- Sampling How often you "take in" data
 - Nyquist Sampling Theorem: Minimum rate of 2x the highest frequency needed
 - E.g., CDs sample at 44.1 kHz
- Claude Shannon's seminal work in 1948 led to Information theory
 - Statistical properties of message, averaged out over the whole message--without regard to content
 - Tells us channel capacity (signal to noise ratio)
 - $-2^x = M (x = number of bits, M = of messages)$
 - Thus, log(2) M = x (now, x is a measure of "entropy")

omputers and Society • Carnegie Mellon University • Spring 2006 • Cranor/Tongia/Farber • http://cups.cs.cmu.edu/courses/compsoc-sp06/

Shannon's Information Theorem

- Relates error-free transmission capacity C, given a bandwidth W (hertz) and signal to noise ratio (S/N)
- $C = W \log 2 * (1 + S/N)$
- Only provides theoretical limits to transmission capabilities
 - · Does not tell us how to encode

computers and Society • Carnegie Mellon University • Spring 2006 • Cranor/Tongia/Farber • http://cups.cs.cmu.edu/courses/compsoc-sp06/

17

Issues in Telecommunications

- Standards
 - Backwards compatibility
- Metrics
 - How to measure size, number of users, etc?
 - Important because of inter-player payments
- Digital Communications
 - Broadcast industries
 - TV
 - Radio
- Mobile communications
 - Rush for "3G"
- "Convergence"

omputers and Society • Carnegie Mellon University • Spring 2006 • Cranor/Tongia/Farber • http://cups.cs.cmu.edu/courses/compsoc-sp06/

Issues in Telecommunications:

- Internet (more later)
- Security
 - Encryption
 - Privacy
- Policy
 - Convergence
 - Open Access
- Market Power
 - Not easy to define at what Layer?
- Globalization
 - · "Winner Takes All"

Computers and Society • Carnegie Mellon University • Spring 2006 • Cranor/Tongia/Farber • http://cups.cs.cmu.edu/courses/compsoc-sp06/

19

What do People Access in the "Last Mile?"

- Voice
- Video
 - Broadcast
 - Switched
 - Even On Demand
- Broadband Internet Access
- These are the TRIPLE PLAY

Computers and Society • Carnegie Mellon University • Spring 2006 • Cranor/Tongia/Farber • http://cups.cs.cmu.edu/courses/compsoc-sp06/

Broadband Access...The "Last Mile"

- Different technologies are available
 - Cable
 - DSL
 - Fiber
 - Wireless
 - Fixed
 - Mobile
 - Satellite
 - Powerline
- They differ in
 - Reach
 - Speeds
 - Costs
 - Regulation (?)

Computers and Society • Carnegie Mellon University • Spring 2006 • Cranor/Tongia/Farber • http://cups.cs.cmu.edu/courses/compsoc-sp06/

21

IPTV Bit Rates

Source: http://www.dslprime.com/pix/cbrrates.jpg

Computers and Society • Carnegie Mellon University • Spring 2006 • Cranor/Tongia/Farber • http://cups.cs.cmu.edu/courses/compsoc-sp06/

Challenges with Wireless...

- ■What prevents us from more wireless broadband?
 - Spectrum
 - Reach
 - Related to power levels
 - Line of Sight
 - Costs
 - Evolving standards and technologies
 - WiFi
 - Mesh, MIMO, etc.
 - WiMax
 - Fixed and Mobile
 - -3G, 4G, etc.

Computers and Society • Carnegie Mellon University • Spring 2006 • Cranor/Tongia/Farber • http://cups.cs.cmu.edu/courses/compsoc-sp06/

Fixed Wireless Access- Inherently Shared

- Base station
 - Point to Multipoint
- Receivers
 - Rooftop
 - Indoors
 - Mobile/Portable
- Shared bandwidth depends on technology
 - 25-40 Mbps downstream (might be)
 - 15-25 Mbps upstream
 - Spectrum matters
 - Unlicensed (UNI 5 GHz)
 - Licensed (e.g., MMDS 2.5 GHz)

Computers and Society • Carnegie Mellon University • Spring 2006 • Cranor/Tongia/Farber • http://cups.cs.cmu.edu/courses/compsoc-sp06/

31

Customer Fixed Wireless Units

Source: Sprint (Hybrid Networks) (antenna/transceiver only)

- Typically, requires clear Line of Sight (LOS)
 - Except in small radius
 - This requires costly site visit to install antenna, run wiring to computer
- Newer alternatives emerging (non-LOS)

Computers and Society • Carnegie Mellon University • Spring 2006 • Cranor/Tongia/Farber • http://cups.cs.cmu.edu/courses/compsoc-sp06/

3:

Base Station Equipment

Source: Sprint (Hybrid Networks-Phoenix)

- A single tower can cover up to 20 mile radius
 - Depends on terrain
- As subscribers increase, may need additional base stations/cells for frequency reuse

omputers and Society • Carnegie Mellon University • Spring 2006 • Cranor/Tongia/Farber • http://cups.cs.cmu.edu/courses/compsoc-sp06

3⊿

Wireless ISPs

- There are several thousand Wireless ISPs (WISPs) in the U.S.
 - Easy because of light touch regulation
 - Spectrum
 - Antennae
- Majority of WISPs use souped up wireless LAN technology
 - Normal WLAN coverage ~ few hundred feet
 - With directional antennas, coverage can reach several miles

Computers and Society • Carnegie Mellon University • Spring 2006 • Cranor/Tongia/Farber • http://cups.cs.cmu.edu/courses/compsoc-sp06/

35

Wireless Mesh Networks

- Popular for many city networks
 - Philadelphia, San Francisco, etc.
- Major advantage
 - Issues of backhaul
- Challenge
 - Shared throughput
- ■Business model questions
 - Free vs. subsidized vs. at cost
- Q: Can one share connectivity?
 - Open Access Points (mesh or non-mesh)?

omputers and Society • Carnegie Mellon University • Spring 2006 • Cranor/Tongia/Farber • http://cups.cs.cmu.edu/courses/compsoc-sp06/

Antennas for Long Range WLANs

13.5dBi Yagi 18 in. Long, 3 in. Dia. Distances over 6.5 Miles @ 2 Mbps and 2 Miles @11 MB

21dBi Solid Dish 24 in. Parabolic Dish For Distances up to 25+ Miles @ 2 Mbps 11.5 Miles @ 11 MB

Note: Distances include identical antennas on each site, 50 feet of Low Loss Cable (6.7dB/100 ft) and 10dB fade margin

Source: Cisco

omputers and Society • Carnegie Mellon University • Spring 2006 • Cranor/Tongia/Farber • http://cups.cs.cmu.edu/courses/compsoc-sp06/

37

Broadband Policy Issues

- Unanswered questions
 - Is there a "natural monopoly" in broadband?
 - Very low marginal costs in telecom
 - How can one support competition over broadband infrastructure?
 - Who should build broadband networks?
 - Public/Private
 - Market/Regulated
 - How do we define and pay for "Universal Service?
- Thinking of layers or boundaries becomes important
 - · Wholesale vs. retail
 - · Physical vs. logical
 - Content vs. carriage

omputers and Society • Carnegie Mellon University • Spring 2006 • Cranor/Tongia/Farber • http://cups.cs.cmu.edu/courses/compsoc-sp06